Clojure for Data Science
暫譯: Clojure 數據科學入門
Henry Garner
- 出版商: Packt Publishing
- 出版日期: 2015-09-04
- 售價: $2,220
- 貴賓價: 9.5 折 $2,109
- 語言: 英文
- 頁數: 608
- 裝訂: Paperback
- ISBN: 1784397180
- ISBN-13: 9781784397180
-
相關分類:
JVM 語言、Data Science
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$2,000$1,900 -
$500$395 -
$380$300 -
$350$277 -
$580$458 -
$580$458
商品描述
Statistics, big data, and machine learning for Clojure programmers
About This Book
- Write code using Clojure to harness the power of your data
- Discover the libraries and frameworks that will help you succeed
- A practical guide to understanding how the Clojure programming language can be used to derive insights from data
Who This Book Is For
This book is aimed at developers who are already productive in Clojure but who are overwhelmed by the breadth and depth of understanding required to be effective in the field of data science. Whether you're tasked with delivering a specific analytics project or simply suspect that you could be deriving more value from your data, this book will inspire you with the opportunities–and inform you of the risks–that exist in data of all shapes and sizes.
What You Will Learn
- Perform hypothesis testing and understand feature selection and statistical significance to interpret your results with confidence
- Implement the core machine learning techniques of regression, classification, clustering and recommendation
- Understand the importance of the value of simple statistics and distributions in exploratory data analysis
- Scale algorithms to web-sized datasets efficiently using distributed programming models on Hadoop and Spark
- Apply suitable analytic approaches for text, graph, and time series data
- Interpret the terminology that you will encounter in technical papers
- Import libraries from other JVM languages such as Java and Scala
- Communicate your findings clearly and convincingly to nontechnical colleagues
In Detail
The term “data science” has been widely used to define this new profession that is expected to interpret vast datasets and translate them to improved decision-making and performance. Clojure is a powerful language that combines the interactivity of a scripting language with the speed of a compiled language. Together with its rich ecosystem of native libraries and an extremely simple and consistent functional approach to data manipulation, which maps closely to mathematical formula, it is an ideal, practical, and flexible language to meet a data scientist's diverse needs.
Taking you on a journey from simple summary statistics to sophisticated machine learning algorithms, this book shows how the Clojure programming language can be used to derive insights from data. Data scientists often forge a novel path, and you'll see how to make use of Clojure's Java interoperability capabilities to access libraries such as Mahout and Mllib for which Clojure wrappers don't yet exist. Even seasoned Clojure developers will develop a deeper appreciation for their language's flexibility!
You'll learn how to apply statistical thinking to your own data and use Clojure to explore, analyze, and visualize it in a technically and statistically robust way. You can also use Incanter for local data processing and ClojureScript to present interactive visualisations and understand how distributed platforms such as Hadoop sand Spark's MapReduce and GraphX's BSP solve the challenges of data analysis at scale, and how to explain algorithms using those programming models.
Above all, by following the explanations in this book, you'll learn not just how to be effective using the current state-of-the-art methods in data science, but why such methods work so that you can continue to be productive as the field evolves into the future.
Style and approach
This is a practical guide to data science that teaches theory by example through the libraries and frameworks accessible from the Clojure programming language.
商品描述(中文翻譯)
**統計學、大數據與機器學習:Clojure 程式設計師的指南**
## 本書介紹
- 使用 Clojure 撰寫程式碼,充分利用您的數據
- 探索將幫助您成功的庫和框架
- 實用指南,幫助您理解如何使用 Clojure 程式語言從數據中獲取洞見
## 本書適合誰
本書針對已經在 Clojure 中具備生產力的開發人員,但對於在數據科學領域中所需的廣泛和深入理解感到不知所措。無論您是負責交付特定的分析專案,還是僅僅懷疑自己可以從數據中獲得更多價值,本書都將啟發您發現各種機會,並告知您在各種形狀和大小的數據中存在的風險。
## 您將學到什麼
- 執行假設檢驗,理解特徵選擇和統計顯著性,以自信地解釋您的結果
- 實現回歸、分類、聚類和推薦等核心機器學習技術
- 理解簡單統計和分佈在探索性數據分析中的重要性
- 使用 Hadoop 和 Spark 的分散式程式設計模型,將算法擴展到網路大小的數據集
- 為文本、圖形和時間序列數據應用合適的分析方法
- 解釋您在技術論文中遇到的術語
- 從其他 JVM 語言(如 Java 和 Scala)導入庫
- 清晰且有說服力地向非技術同事傳達您的發現
## 詳細內容
“數據科學”這個術語已被廣泛使用,以定義這一新興職業,預期能夠解釋龐大的數據集並將其轉化為改進的決策和績效。Clojure 是一種強大的語言,結合了腳本語言的互動性和編譯語言的速度。加上其豐富的本地庫生態系統以及極其簡單且一致的函數式數據操作方法,與數學公式緊密對應,這使其成為滿足數據科學家多樣需求的理想、實用且靈活的語言。
本書將帶您從簡單的摘要統計學走向複雜的機器學習算法,展示如何使用 Clojure 程式語言從數據中獲取洞見。數據科學家經常開創新路徑,您將看到如何利用 Clojure 的 Java 互操作性來訪問尚未存在 Clojure 包裝器的庫,如 Mahout 和 Mllib。即使是經驗豐富的 Clojure 開發人員也會對其語言的靈活性有更深的認識!
您將學會如何將統計思維應用於自己的數據,並使用 Clojure 以技術上和統計上穩健的方式探索、分析和可視化數據。您還可以使用 Incanter 進行本地數據處理,並使用 ClojureScript 來呈現互動式可視化,了解如何使用 Hadoop 和 Spark 的 MapReduce 及 GraphX 的 BSP 解決大規模數據分析的挑戰,以及如何使用這些程式設計模型解釋算法。
最重要的是,通過遵循本書中的解釋,您將學會如何有效地使用當前最先進的數據科學方法,以及這些方法為何有效,以便在該領域未來發展時,您仍能保持生產力。
## 風格與方法
這是一本實用的數據科學指南,通過 Clojure 程式語言可訪問的庫和框架,通過範例教授理論。