R Data Analysis Cookbook - More Than 80 Recipes to Help You Deliver Sharp Data Analysis
暫譯: R 數據分析食譜 - 超過 80 種食譜幫助您提供精確的數據分析
Viswa Viswanathan, Shanthi Viswanathan
- 出版商: Packt Publishing
- 出版日期: 2015-05-30
- 售價: $1,870
- 貴賓價: 9.5 折 $1,777
- 語言: 英文
- 頁數: 342
- 裝訂: Paperback
- ISBN: 1783989068
- ISBN-13: 9781783989065
-
相關分類:
R 語言、Data Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
Key Features
- Analyse data with ready-to-use and customizable recipes
- Discover convenient functions to speed-up your work and data files
- Explore the leading R packages built for expert data analysis
Book Description
Data analysis has recently emerged as a very important focus for a huge range of organizations and businesses. R makes detailed data analysis easier, making advanced data exploration and insight accessible to anyone interested in learning it.
This book empowers you by showing you ways to use R to generate professional analysis reports. It provides examples for various important analysis and machine-learning tasks that you can try out with associated and readily available data. The book also teaches you to quickly adapt the example code for your own needs and save yourself the time needed to construct code from scratch.
What you will learn
- Get data into your R environment and prepare it for analysis
- Perform exploratory data analyses and generate meaningful visualizations of the data
- Apply several machine-learning techniques for classification and regression
- Get your hands around large data sets with the help of reduction techniques
- Extract patterns from time-series data and produce forecasts based on them
- Learn how to extract actionable information from social network data
- Implement geospatial analysis
- Present your analysis convincingly through reports and build an infrastructure to enable others to play with your data
About the Author
Viswa Viswanathan is an associate professor of Computing and Decision Sciences at the Stillman School of Business in Seton Hall University. After completing his PhD in artificial intelligence, Viswa spent a decade in academia and then switched to a leadership position in the software industry for a decade.
Shanthi Viswanathan is an experienced technologist who has delivered technology management and enterprise architecture consulting to many enterprise customers. She has worked for Infosys Technologies, Oracle Corporation, and Accenture. As a consultant, Shanthi has helped several large organizations, such as Canon, Cisco, Celgene, Amway, Time Warner Cable, and GE among others, in areas such as data architecture and analytics, master data management, service-oriented architecture, business process management, and modeling.
Table of Contents
- Acquire and Prepare the Ingredients Your Data
- What's in There? Exploratory Data Analysis
- Where Does It Belong? Classification
- Give Me a Number Regression
- Can You Simplify That? Data Reduction Techniques
- Lessons from History Time Series Analysis
- It's All about Your Connections Social Network Analysis
- Put Your Best Foot Forward Document and Present Your Analysis
- Work Smarter, Not Harder Efficient and Elegant R Code
- Where in the World? Geospatial Analysis
- Playing Nice Connecting to Other Systems
商品描述(中文翻譯)
**主要特點**
- 使用現成且可自訂的配方分析數據
- 發現方便的功能以加速您的工作和數據文件
- 探索為專業數據分析而建立的領先 R 套件
**書籍描述**
數據分析最近已成為各種組織和企業非常重要的焦點。R 使詳細的數據分析變得更容易,讓任何有興趣學習的人都能進行高級數據探索和洞察。
本書通過展示如何使用 R 生成專業分析報告來賦予您能力。它提供了各種重要分析和機器學習任務的範例,您可以使用相關且隨時可用的數據進行實驗。本書還教您如何快速調整範例代碼以滿足自己的需求,節省從頭開始編寫代碼所需的時間。
**您將學到的內容**
- 將數據導入您的 R 環境並為分析做好準備
- 執行探索性數據分析並生成有意義的數據可視化
- 應用多種機器學習技術進行分類和回歸
- 利用降維技術處理大型數據集
- 從時間序列數據中提取模式並基於這些模式生成預測
- 學習如何從社交網絡數據中提取可行的信息
- 實施地理空間分析
- 通過報告有說服力地呈現您的分析,並建立基礎設施以便讓其他人使用您的數據
**關於作者**
**Viswa Viswanathan** 是塞頓霍爾大學斯蒂爾曼商學院計算與決策科學的副教授。在完成人工智慧博士學位後,Viswa 在學術界工作了十年,然後轉向軟體行業的領導職位,並在該領域工作了十年。
**Shanthi Viswanathan** 是一位經驗豐富的技術專家,為許多企業客戶提供技術管理和企業架構諮詢。她曾在 Infosys Technologies、Oracle Corporation 和 Accenture 工作。作為顧問,Shanthi 幫助了多家大型組織,如佳能、思科、Celgene、安利、時代華納有線電視和通用電氣等,在數據架構和分析、主數據管理、面向服務的架構、業務流程管理和建模等領域提供支持。
**目錄**
1. 獲取和準備您的數據成分
2. 裡面有什麼?探索性數據分析
3. 它屬於哪裡?分類
4. 給我一個數字 回歸
5. 你能簡化嗎?數據降維技術
6. 歷史的教訓 時間序列分析
7. 一切都與您的連接有關 社交網絡分析
8. 展現最佳表現 文件和呈現您的分析
9. 更聰明地工作,而不是更辛苦 高效且優雅的 R 代碼
10. 世界的哪裡?地理空間分析
11. 和諧相處 連接到其他系統