Learning Apache Mahout Classification
暫譯: 學習 Apache Mahout 分類

Ashish Gupta

  • 出版商: Packt Publishing
  • 出版日期: 2015-02-27
  • 售價: $1,400
  • 貴賓價: 9.5$1,330
  • 語言: 英文
  • 頁數: 130
  • 裝訂: Paperback
  • ISBN: 1783554959
  • ISBN-13: 9781783554959
  • 海外代購書籍(需單獨結帳)

商品描述

Build and personalize your own classifiers using Apache Mahout

About This Book

  • Explore the different types of classification algorithms available in Apache Mahout
  • Create and evaluate your own ready-to-use classification models using real world datasets
  • A practical guide to problems faced in classification with concepts explained in an easy-to-understand manner

Who This Book Is For

If you are a data scientist who has some experience with the Hadoop ecosystem and machine learning methods and want to try out classification on large datasets using Mahout, this book is ideal for you. Knowledge of Java is essential.

What You Will Learn

  • Apply machine learning techniques in the area of classification
  • Categorize the unknown items by using the classification model in Apache Mahout
  • Use the classifier to classify text documents
  • Implement a multilayer perceptron to map sets of input to appropriate output sets
  • Develop the Hidden Markov model for a system with hidden states
  • Build and deploy an e-mail classifier that can predict the delivery of incoming mail

In Detail

This book is a practical guide that explains the classification algorithms provided in Apache Mahout with the help of actual examples. Starting with the introduction of classification and model evaluation techniques, we will explore Apache Mahout and learn why it is a good choice for classification.

Next, you will learn about different classification algorithms and models such as the Naive Bayes algorithm, the Hidden Markov Model, and so on.

Finally, along with the examples that assist you in the creation of models, this book helps you to build a mail classification system that can be produced as soon as it is developed. After reading this book, you will be able to understand the concept of classification and the various algorithms along with the art of building your own classifiers.

商品描述(中文翻譯)

**建立和個性化您的分類器,使用 Apache Mahout**

## 本書介紹
- 探索 Apache Mahout 中可用的不同類型的分類演算法
- 使用真實世界數據集創建和評估您自己的即用型分類模型
- 實用指南,解釋分類中面臨的問題,並以易於理解的方式說明概念

## 本書適合誰
如果您是一位對 Hadoop 生態系統和機器學習方法有一定經驗的數據科學家,並希望使用 Mahout 在大型數據集上嘗試分類,這本書非常適合您。具備 Java 知識是必須的。

## 您將學到什麼
- 在分類領域應用機器學習技術
- 使用 Apache Mahout 中的分類模型對未知項目進行分類
- 使用分類器對文本文件進行分類
- 實現多層感知器將輸入集映射到適當的輸出集
- 為具有隱藏狀態的系統開發隱藏馬可夫模型
- 建立和部署一個電子郵件分類器,能夠預測進來郵件的投遞情況

## 詳細內容
本書是一個實用指南,通過實際範例解釋 Apache Mahout 提供的分類演算法。從分類和模型評估技術的介紹開始,我們將探索 Apache Mahout,並了解為什麼它是分類的良好選擇。

接下來,您將了解不同的分類演算法和模型,例如朴素貝葉斯演算法、隱藏馬可夫模型等。

最後,隨著幫助您創建模型的範例,本書幫助您建立一個郵件分類系統,該系統可以在開發完成後立即投入使用。閱讀完本書後,您將能夠理解分類的概念及各種演算法,並掌握建立自己分類器的技巧。

最後瀏覽商品 (19)