Practical Big Data Analytics: Hands-on techniques to implement enterprise analytics and machine learning using Hadoop, Spark, NoSQL and R
暫譯: 實用大數據分析:使用 Hadoop、Spark、NoSQL 和 R 實現企業分析與機器學習的實作技術
Nataraj Dasgupta
- 出版商: Packt Publishing
- 出版日期: 2018-01-15
- 定價: $1,480
- 售價: 8.0 折 $1,184
- 語言: 英文
- 頁數: 412
- 裝訂: Paperback
- ISBN: 1783554398
- ISBN-13: 9781783554393
-
相關分類:
Hadoop、NoSQL、Spark、SQL、大數據 Big-data、Machine Learning、Data Science
立即出貨 (庫存=1)
買這商品的人也買了...
-
$403深度學習入門之 PyTorch
-
$250深度學習精要 基於R語言
-
$474$450 -
$2,081Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning
-
$480$379 -
$354$336 -
$281自動化測試 主流工具入門與提高
-
$301混沌工程實戰 手把手教你實現系統穩定性
-
$659$626 -
$654$621 -
$414$393 -
$1,200$948 -
$714$678 -
$654$621 -
$653機器學習項目交付實戰
-
$479$455 -
$714$678 -
$1,200$948 -
$505R語言資料分析:基礎、演算法與實戰
-
$458Python服務端測試開發實戰
-
$490$387 -
$800$632 -
$780$616 -
$654$621 -
$419$398
商品描述
Get command of your organizational Big Data using the power of data science and analytics
Key Features
- A perfect companion to boost your Big Data storing, processing, analyzing skills to help you take informed business decisions
- Work with the best tools such as Apache Hadoop, R, Python, and Spark for NoSQL platforms to perform massive online analyses
- Get expert tips on statistical inference, machine learning, mathematical modeling, and data visualization for Big Data
Book Description
Big Data analytics relates to the strategies used by organizations to collect, organize and analyze large amounts of data to uncover valuable business insights that otherwise cannot be analyzed through traditional systems. Crafting an enterprise-scale cost-efficient Big Data and machine learning solution to uncover insights and value from your organization's data is a challenge. Today, with hundreds of new Big Data systems, machine learning packages and BI Tools, selecting the right combination of technologies is an even greater challenge. This book will help you do that.
With the help of this guide, you will be able to bridge the gap between the theoretical world of technology with the practical ground reality of building corporate Big Data and data science platforms. You will get hands-on exposure to Hadoop and Spark, build machine learning dashboards using R and R Shiny, create web-based apps using NoSQL databases such as MongoDB and even learn how to write R code for neural networks.
By the end of the book, you will have a very clear and concrete understanding of what Big Data analytics means, how it drives revenues for organizations, and how you can develop your own Big Data analytics solution using different tools and methods articulated in this book.
What you will learn
- Get a 360-degree view into the world of Big Data, data science and machine learning
- Broad range of technical and business Big Data analytics topics that caters to the interests of the technical experts as well as corporate IT executives
- Get hands-on experience with industry-standard Big Data and machine learning tools such as Hadoop, Spark, MongoDB, KDB+ and R
- Create production-grade machine learning BI Dashboards using R and R Shiny with step-by-step instructions
- Learn how to combine open-source Big Data, machine learning and BI Tools to create low-cost business analytics applications
- Understand corporate strategies for successful Big Data and data science projects
- Go beyond general-purpose analytics to develop cutting-edge Big Data applications using emerging technologies
Who This Book Is For
The book is intended for existing and aspiring Big Data professionals who wish to become the go-to person in their organization when it comes to Big Data architecture, analytics, and governance. While no prior knowledge of Big Data or related technologies is assumed, it will be helpful to have some programming experience.
Table of Contents
- Too Big Or Not Too Big
- Big Data Mining For The Masses
- From Big Data to Data Analytics
- Big Data Mining & Hadoop
- Big Data Mining & NoSQL
- Big Data Mining & Spark
- Machine Learning For The Masses
- Machine Learning Deep Dive
- The Analytics Infrastructure
- Closing thoughts on Big Data
- Appendix
商品描述(中文翻譯)
掌握組織的大數據,利用數據科學和分析的力量
主要特點
- 完美的伴侶,提升您在大數據存儲、處理和分析方面的技能,幫助您做出明智的商業決策
- 使用 Apache Hadoop、R、Python 和 Spark 等最佳工具,對 NoSQL 平台進行大規模在線分析
- 獲取有關統計推斷、機器學習、數學建模和大數據可視化的專家建議
書籍描述
大數據分析與組織用來收集、組織和分析大量數據的策略有關,以揭示通過傳統系統無法分析的有價值的商業洞察。打造一個企業級的高效成本的大數據和機器學習解決方案,以從組織的數據中發掘洞察和價值是一項挑戰。如今,隨著數百種新的大數據系統、機器學習套件和商業智能工具的出現,選擇正確的技術組合是一個更大的挑戰。本書將幫助您做到這一點。
在本指南的幫助下,您將能夠彌合技術理論世界與構建企業大數據和數據科學平台的實際現實之間的差距。您將獲得對 Hadoop 和 Spark 的實際操作經驗,使用 R 和 R Shiny 構建機器學習儀表板,使用 MongoDB 等 NoSQL 數據庫創建基於網頁的應用程序,甚至學習如何為神經網絡編寫 R 代碼。
到書籍結束時,您將對大數據分析的含義有非常清晰和具體的理解,了解它如何為組織帶來收入,以及如何使用本書中闡述的不同工具和方法開發自己的大數據分析解決方案。
您將學到什麼
- 獲得對大數據、數據科學和機器學習世界的360度全景視角
- 涵蓋技術專家和企業 IT 高管興趣的廣泛技術和商業大數據分析主題
- 獲得使用行業標準的大數據和機器學習工具(如 Hadoop、Spark、MongoDB、KDB+ 和 R)的實踐經驗
- 使用 R 和 R Shiny 創建生產級的機器學習商業智能儀表板,並提供逐步指導
- 學習如何結合開源大數據、機器學習和商業智能工具,創建低成本的商業分析應用程序
- 了解成功的大數據和數據科學項目的企業策略
- 超越通用分析,利用新興技術開發尖端的大數據應用程序
本書適合誰
本書旨在為現有和有志於成為大數據專業人士的人士提供幫助,讓他們在組織中成為大數據架構、分析和治理方面的首選人選。雖然不假設讀者具備大數據或相關技術的先前知識,但擁有一些編程經驗將會有所幫助。
目錄
- 太大還是剛好
- 為大眾提供的大數據挖掘
- 從大數據到數據分析
- 大數據挖掘與 Hadoop
- 大數據挖掘與 NoSQL
- 大數據挖掘與 Spark
- 為大眾提供的機器學習
- 機器學習深入探討
- 分析基礎設施
- 關於大數據的結語
- 附錄