Haskell Financial Data Modeling and Predictive Analytics
暫譯: Haskell 財務數據建模與預測分析

Pavel Ryzhov

  • 出版商: Packt Publishing
  • 出版日期: 2013-09-10
  • 售價: $1,690
  • 貴賓價: 9.5$1,606
  • 語言: 英文
  • 頁數: 112
  • 裝訂: Paperback
  • ISBN: 1782169431
  • ISBN-13: 9781782169437
  • 相關分類: Functional-programmingMachine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Get an in-depth analysis of financial time series from the perspective of a functional programmer

Overview

  • Understand the foundations of financial stochastic processes
  • Build robust models quickly and efficiently
  • Tackle the complexity of parallel programming

In Detail

Haskell is one of the three most influential functional programming languages available today along with Lisp and Standard ML. When used for financial analysis, you can achieve a much-improved level of prediction and clear problem descriptions.

Haskell Financial Data Modeling and Predictive Analytics is a hands-on guide that employs a mix of theory and practice. Starting with the basics of Haskell, this book walks you through the mathematics involved and how this is implemented in Haskell.

The book starts with an introduction to the Haskell platform and the Glasgow Haskell Compiler (GHC). You will then learn about the basics of high frequency financial data mathematics as well as how to implement these mathematical algorithms in Haskell.

You will also learn about the most popular Haskell libraries and frameworks like Attoparsec, QuickCheck, and HMatrix. You will also become familiar with database access using Yesod’s Persistence library, allowing you to keep your data organized. The book then moves on to discuss the mathematics of counting processes and autoregressive conditional duration models, which are quite common modeling tools for high frequency tick data. At the end of the book, you will also learn about the volatility prediction technique.

With Haskell Financial Data Modeling and Predictive Analytics, you will learn everything you need to know about financial data modeling and predictive analytics using functional programming in Haskell.

What you will learn from this book

  • Learn how to build a FIX protocol parser
  • Calibrate counting processes on real data
  • Estimate model parameters using the Maximum Likelihood Estimation method
  • Use Akaike criterion to choose the best-fit model
  • Learn how to perform property-based testing on a generated set of input data
  • Calibrate ACD models with the Kalman filter
  • Understand parallel programming in Haskell
  • Learn more about volatility prediction

Approach

This book is a hands-on guide that teaches readers how to use Haskell's tools and libraries to analyze data from real-world sources in an easy-to-understand manner.

Who this book is written for

This book is great for developers who are new to financial data modeling using Haskell. A basic knowledge of functional programming is not required but will be useful. An interest in high frequency finance is essential.

商品描述(中文翻譯)

獲得從函數式程式設計師的角度對金融時間序列的深入分析

概述
- 了解金融隨機過程的基礎
- 快速有效地建立穩健的模型
- 解決平行程式設計的複雜性

詳細內容
Haskell 是當今三種最具影響力的函數式程式設計語言之一,與 Lisp 和 Standard ML 並列。當用於金融分析時,您可以實現更高水平的預測和清晰的問題描述。

《Haskell 金融數據建模與預測分析》是一本實用指南,結合了理論與實踐。從 Haskell 的基礎開始,本書將引導您了解所涉及的數學以及如何在 Haskell 中實現這些數學。

本書首先介紹 Haskell 平台和格拉斯哥 Haskell 編譯器(GHC)。接著,您將學習高頻金融數據數學的基礎,以及如何在 Haskell 中實現這些數學算法。

您還將了解最受歡迎的 Haskell 函式庫和框架,如 Attoparsec、QuickCheck 和 HMatrix。您還將熟悉使用 Yesod 的持久性函式庫進行數據庫訪問,這樣可以保持數據的組織性。然後,本書將討論計數過程和自回歸條件持續時間模型的數學,這些都是高頻報價數據中相當常見的建模工具。在本書的最後,您還將學習波動率預測技術。

通過《Haskell 金融數據建模與預測分析》,您將學到有關使用 Haskell 進行金融數據建模和預測分析所需的所有知識。

您將從本書中學到的內容
- 學習如何建立 FIX 協議解析器
- 在實際數據上校準計數過程
- 使用最大似然估計法估算模型參數
- 使用 Akaike 準則選擇最佳擬合模型
- 學習如何對生成的輸入數據集進行基於屬性的測試
- 使用卡爾曼濾波器校準 ACD 模型
- 了解 Haskell 中的平行程式設計
- 進一步了解波動率預測

方法
本書是一本實用指南,教導讀者如何使用 Haskell 的工具和函式庫以易於理解的方式分析來自現實世界的數據。

本書的讀者對象
本書非常適合對使用 Haskell 進行金融數據建模的新開發者。雖然不需要具備函數式程式設計的基本知識,但這將是有幫助的。對高頻金融的興趣是必須的。