Parallel Processing, 1980 to 2020
暫譯: 平行處理:1980年至2020年

Kuhn, Robert, Padua, David

  • 出版商: Morgan & Claypool
  • 出版日期: 2020-10-14
  • 售價: $3,180
  • 貴賓價: 9.5$3,021
  • 語言: 英文
  • 頁數: 166
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1681739771
  • ISBN-13: 9781681739779
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This historical survey of parallel processing from 1980 to 2020 is a follow-up to the authors' 1981 Tutorial on Parallel Processing, which covered the state of the art in hardware, programming languages, and applications. Here, we cover the evolution of the field since 1980 in: parallel computers, ranging from the Cyber 205 to clusters now approaching an exaflop, to multicore microprocessors, and Graphic Processing Units (GPUs) in commodity personal devices; parallel programming notations such as OpenMP, MPI message passing, and CUDA streaming notation; and seven parallel applications, such as finite element analysis and computer vision. Some things that looked like they would be major trends in 1981, such as big Single Instruction Multiple Data arrays disappeared for some time but have been revived recently in deep neural network processors. There are now major trends that did not exist in 1980, such as GPUs, distributed memory machines, and parallel processing in nearly every commodity device.

This book is intended for those that already have some knowledge of parallel processing today and want to learn about the history of the three areas. In parallel hardware, every major parallel architecture type from 1980 has scaled-up in performance and scaled-out into commodity microprocessors and GPUs, so that every personal and embedded device is a parallel processor. There has been a confluence of parallel architecture types into hybrid parallel systems. Much of the impetus for change has been Moore's Law, but as clock speed increases have stopped and feature size decreases have slowed down, there has been increased demand on parallel processing to continue performance gains. In programming notations and compilers, we observe that the roots of today's programming notations existed before 1980. And that, through a great deal of research, the most widely used programming notations today, although the result of much broadening of these roots, remain close to target system architectures allowing the programmer to almost explicitly use the target's parallelism to the best of their ability. The parallel versions of applications directly or indirectly impact nearly everyone, computer expert or not, and parallelism has brought about major breakthroughs in numerous application areas. Seven parallel applications are studied in this book.

商品描述(中文翻譯)

這本關於1980年至2020年平行處理的歷史調查是作者1981年《平行處理教程》的後續,該教程涵蓋了硬體、程式語言和應用的最新技術。在這裡,我們將介紹自1980年以來該領域的演變,包括:平行電腦,從Cyber 205到現在接近exaflop的叢集,再到多核心微處理器和在一般個人設備中的圖形處理單元(GPU);平行程式設計符號,如OpenMP、MPI訊息傳遞和CUDA串流符號;以及七個平行應用,如有限元素分析和計算機視覺。一些在1981年看起來會成為主要趨勢的事物,如大型單指令多數據(SIMD)陣列,曾經消失了一段時間,但最近在深度神經網路處理器中復甦。現在出現了一些在1980年不存在的主要趨勢,如GPU、分散式記憶體機器,以及幾乎每個一般設備中的平行處理。

本書旨在針對那些已經對當今平行處理有一定了解的人,並希望了解這三個領域的歷史。在平行硬體方面,自1980年以來的每一種主要平行架構類型都在性能上有所提升,並擴展到一般微處理器和GPU,使得每個個人和嵌入式設備都成為平行處理器。平行架構類型的融合形成了混合平行系統。變革的主要推動力是摩爾定律,但隨著時鐘速度的增長停止和特徵尺寸的減少放緩,對平行處理的需求增加,以持續獲得性能提升。在程式設計符號和編譯器方面,我們觀察到當今程式設計符號的根源在1980年之前就已存在。通過大量的研究,當今最廣泛使用的程式設計符號,雖然是這些根源的廣泛延伸的結果,但仍然與目標系統架構密切相關,使程式設計師幾乎可以明確地利用目標的平行性,發揮其最佳能力。本書研究了七個平行應用,這些應用直接或間接影響幾乎每個人,無論是否是計算機專家,而平行性在許多應用領域帶來了重大突破。