Machine Learning for Solar Array Monitoring, Optimization, and Control
暫譯: 太陽能電池板監控、優化與控制的機器學習
Rao, Sunil, Katoch, Sameeksha, Narayanaswamy, Vivek
- 出版商: Morgan & Claypool
- 出版日期: 2020-08-31
- 售價: $2,410
- 貴賓價: 9.5 折 $2,290
- 語言: 英文
- 頁數: 91
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1681739097
- ISBN-13: 9781681739090
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
商品描述
The efficiency of solar energy farms requires detailed analytics and information on each panel regarding voltage, current, temperature, and irradiance. Monitoring utility-scale solar arrays was shown to minimize the cost of maintenance and help optimize the performance of the photo-voltaic arrays under various conditions. We describe a project that includes development of machine learning and signal processing algorithms along with a solar array testbed for the purpose of PV monitoring and control. The 18kW PV array testbed consists of 104 panels fitted with smart monitoring devices. Each of these devices embeds sensors, wireless transceivers, and relays that enable continuous monitoring, fault detection, and real-time connection topology changes. The facility enables networked data exchanges via the use of wireless data sharing with servers, fusion and control centers, and mobile devices. We develop machine learning and neural network algorithms for fault classification. In addition, we use weather camera data for cloud movement prediction using kernel regression techniques which serves as the input that guides topology reconfiguration. Camera and satellite sensing of skyline features as well as parameter sensing at each panel provides information for fault detection and power output optimization using topology reconfiguration achieved using programmable actuators (relays) in the SMDs. More specifically, a custom neural network algorithm guides the selection among four standardized topologies. Accuracy in fault detection is demonstrate at the level of 90+% and topology optimization provides increase in power by as much as 16% under shading.
商品描述(中文翻譯)
太陽能農場的效率需要對每個面板的電壓、電流、溫度和輻照度進行詳細的分析和資訊監控。對公用事業規模的太陽能陣列進行監控已被證明可以最小化維護成本,並幫助在各種條件下優化光伏陣列的性能。我們描述了一個項目,該項目包括開發機器學習和信號處理算法,以及一個用於光伏監控和控制的太陽能陣列測試平台。這個18kW的光伏陣列測試平台由104個配備智能監控設備的面板組成。這些設備內嵌傳感器、無線收發器和繼電器,能夠實現持續監控、故障檢測和實時連接拓撲變更。該設施通過無線數據共享與伺服器、融合和控制中心以及移動設備進行網絡數據交換。我們開發了用於故障分類的機器學習和神經網絡算法。此外,我們使用氣象攝影機數據,利用核回歸技術預測雲層運動,這些數據作為指導拓撲重新配置的輸入。攝影機和衛星對天際線特徵的感測以及每個面板的參數感測提供了故障檢測和功率輸出優化所需的信息,這些優化是通過在智能監控設備中使用可編程執行器(繼電器)實現的。更具體地說,一個自定義的神經網絡算法指導在四種標準化拓撲之間的選擇。故障檢測的準確率達到90%以上,而拓撲優化在陰影下可提高功率達16%。