Deep Learning Approaches to Text Production
暫譯: 深度學習在文本生成中的應用

Narayan, Shashi, Gardent, Claire

  • 出版商: Morgan & Claypool
  • 出版日期: 2020-03-20
  • 售價: $3,530
  • 貴賓價: 9.5$3,354
  • 語言: 英文
  • 頁數: 199
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1681737604
  • ISBN-13: 9781681737607
  • 相關分類: DeepLearning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Text production has many applications. It is used, for instance, to generate dialogue turns from dialogue moves, verbalise the content of knowledge bases, or generate English sentences from rich linguistic representations, such as dependency trees or abstract meaning representations. Text production is also at work in text-to-text transformations such as sentence compression, sentence fusion, paraphrasing, sentence (or text) simplification, and text summarisation. This book offers an overview of the fundamentals of neural models for text production. In particular, we elaborate on three main aspects of neural approaches to text production: how sequential decoders learn to generate adequate text, how encoders learn to produce better input representations, and how neural generators account for task-specific objectives. Indeed, each text-production task raises a slightly different challenge (e.g, how to take the dialogue context into account when producing a dialogue turn, how to detect and merge relevant information when summarising a text, or how to produce a well-formed text that correctly captures the information contained in some input data in the case of data-to-text generation). We outline the constraints specific to some of these tasks and examine how existing neural models account for them. More generally, this book considers text-to-text, meaning-to-text, and data-to-text transformations. It aims to provide the audience with a basic knowledge of neural approaches to text production and a roadmap to get them started with the related work. The book is mainly targeted at researchers, graduate students, and industrials interested in text production from different forms of inputs.

商品描述(中文翻譯)

文本生成有許多應用。例如,它可以用來從對話動作生成對話回合、將知識庫的內容轉化為文字,或是從豐富的語言表示(如依賴樹或抽象意義表示)生成英語句子。文本生成也應用於文本到文本的轉換,例如句子壓縮、句子融合、意譯、句子(或文本)簡化以及文本摘要。本書提供了神經模型在文本生成基礎知識的概述。特別地,我們詳細說明了神經方法在文本生成中的三個主要方面:序列解碼器如何學習生成適當的文本、編碼器如何學習產生更好的輸入表示,以及神經生成器如何考慮特定任務的目標。事實上,每個文本生成任務都會提出稍微不同的挑戰(例如,在生成對話回合時如何考慮對話上下文、在摘要文本時如何檢測和合併相關信息,或在數據到文本生成的情況下如何生成正確捕捉輸入數據中信息的良好格式文本)。我們概述了這些任務特有的限制,並檢視現有的神經模型如何應對這些挑戰。更一般地說,本書考慮了文本到文本、意義到文本和數據到文本的轉換。它旨在為讀者提供神經方法在文本生成方面的基本知識,以及開始相關工作的路線圖。本書主要針對對文本生成感興趣的研究人員、研究生和業界人士。