Covariances in Computer Vision and Machine Learning (Synthesis Lectures on Computer Vision)
暫譯: 計算機視覺與機器學習中的協方差(計算機視覺綜合講座)

Minh Ha Quang, Vittorio Murino

  • 出版商: Morgan & Claypool
  • 出版日期: 2017-11-07
  • 售價: $3,180
  • 貴賓價: 9.5$3,021
  • 語言: 英文
  • 頁數: 170
  • 裝訂: Hardcover
  • ISBN: 1681732599
  • ISBN-13: 9781681732596
  • 相關分類: Machine LearningComputer Vision
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Covariance matrices play important roles in many areas of mathematics, statistics, and machine learning, as well as their applications. In computer vision and image processing, they give rise to a powerful data representation, namely the covariance descriptor, with numerous practical applications.

In this book, we begin by presenting an overview of the {\it finite-dimensional covariance matrix} representation approach of images, along with its statistical interpretation. In particular, we discuss the various distances and divergences that arise from the intrinsic geometrical structures of the set of Symmetric Positive Definite (SPD) matrices, namely Riemannian manifold and convex cone structures. Computationally, we focus on kernel methods on covariance matrices, especially using the Log-Euclidean distance.

We then show some of the latest developments in the generalization of the finite-dimensional covariance matrix representation to the {\it infinite-dimensional covariance operator} representation via positive definite kernels. We present the generalization of the affine-invariant Riemannian metric and the Log-Hilbert-Schmidt metric, which generalizes the Log Euclidean distance. Computationally, we focus on kernel methods on covariance operators, especially using the Log-Hilbert-Schmidt distance. Specifically, we present a two-layer kernel machine, using the Log-Hilbert-Schmidt distance and its finite-dimensional approximation, which reduces the computational complexity of the exact formulation while largely preserving its capability. Theoretical analysis shows that, mathematically, the approximate Log-Hilbert-Schmidt distance should be preferred over the approximate Log-Hilbert-Schmidt inner product and, computationally, it should be preferred over the approximate affine-invariant Riemannian distance.

Numerical experiments on image classification demonstrate significant improvements of the infinite-dimensional formulation over the finite-dimensional counterpart. Given the numerous applications of covariance matrices in many areas of mathematics, statistics, and machine learning, just to name a few, we expect that the infinite-dimensional covariance operator formulation presented here will have many more applications beyond those in computer vision.

商品描述(中文翻譯)

協方差矩陣在數學、統計學和機器學習的許多領域及其應用中扮演著重要角色。在計算機視覺和圖像處理中,它們產生了一種強大的數據表示,即協方差描述子,並具有眾多實際應用。

在本書中,我們首先介紹圖像的有限維協方差矩陣表示方法的概述,以及其統計解釋。特別地,我們討論從對稱正定(Symmetric Positive Definite, SPD)矩陣集合的內在幾何結構中產生的各種距離和散度,即黎曼流形(Riemannian manifold)和凸錐結構。計算上,我們專注於協方差矩陣上的核方法,特別是使用對數歐幾里得距離(Log-Euclidean distance)。

接著,我們展示了將有限維協方差矩陣表示推廣到無限維協方差算子表示的最新發展,這是通過正定核來實現的。我們介紹了仿射不變黎曼度量(affine-invariant Riemannian metric)和對數希爾伯特-施密特度量(Log-Hilbert-Schmidt metric)的推廣,後者推廣了對數歐幾里得距離。在計算上,我們專注於協方差算子上的核方法,特別是使用對數希爾伯特-施密特距離。具體而言,我們提出了一種兩層核機器,使用對數希爾伯特-施密特距離及其有限維近似,這降低了精確公式的計算複雜性,同時在很大程度上保留了其能力。理論分析顯示,從數學上講,近似的對數希爾伯特-施密特距離應優於近似的對數希爾伯特-施密特內積,而在計算上,它應優於近似的仿射不變黎曼距離。

對圖像分類的數值實驗顯示,無限維公式在性能上顯著優於有限維對應物。考慮到協方差矩陣在數學、統計學和機器學習等許多領域的眾多應用,我們預期這裡提出的無限維協方差算子公式將在計算機視覺以外的領域有更多的應用。