Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds
暫譯: 工程師的張量微積分基礎與光滑流形入門
Muhlich, Uwe
- 出版商: Springer
- 出版日期: 2018-07-25
- 售價: $6,480
- 貴賓價: 9.5 折 $6,156
- 語言: 英文
- 頁數: 125
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3319858696
- ISBN-13: 9783319858692
-
相關分類:
微積分 Calculus
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept.
After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters.
It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms.
The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out.
商品描述(中文翻譯)
這本書介紹了現代張量微積分的基本原理,適合工程和應用物理的學生,強調在歐幾里得空間中安全應用張量微積分所需的關鍵方面,以及理解光滑流形概念的本質。
在介紹主題後,書中簡要闡述了點集拓撲,以幫助讀者熟悉該主題,特別是後續章節所需的相關主題。
接著,書中描述了有限維實向量空間及其對偶,重點介紹了後者在物理中編碼對偶概念的實用性。此外,書中將張量介紹為編碼線性映射的對象,並討論了仿射空間和歐幾里得空間。張量分析首先在歐幾里得空間中進行,從可微性概念的概括開始,然後進入方向導數、協變導數和基於微分形式的積分等概念。
最後一章探討了光滑流形在建模非歐幾里得空間中的角色,特別是光滑圖集和切空間的概念,這對於理解該主題至關重要。隨後,書中詳細闡述了兩個最重要的概念,即切束和李導數。