Stochastic Partial Differential Equations for Computer Vision with Uncertain Data (Synthesis Lectures on Visual Computing) (不確定數據的隨機偏微分方程與電腦視覺(視覺計算綜合講座))
Tobias Preusser, Robert M. Kirby, Torben Pätz
- 出版商: Morgan & Claypool
- 出版日期: 2017-07-13
- 售價: $2,080
- 貴賓價: 9.5 折 $1,976
- 語言: 英文
- 頁數: 162
- 裝訂: Paperback
- ISBN: 1681731436
- ISBN-13: 9781681731438
-
相關分類:
Computer Vision
海外代購書籍(需單獨結帳)
相關主題
商品描述
In image processing and computer vision applications such as medical or scientific image data analysis, as well as in industrial scenarios, images are used as input measurement data. It is good scientific practice that proper measurements must be equipped with error and uncertainty estimates. For many applications, not only the measured values but also their errors and uncertainties, should be-and more and more frequently are-taken into account for further processing. This error and uncertainty propagation must be done for every processing step such that the final result comes with a reliable precision estimate.
The goal of this book is to introduce the reader to the recent advances from the field of uncertainty quantification and error propagation for computer vision, image processing, and image analysis that are based on partial differential equations (PDEs). It presents a concept with which error propagation and sensitivity analysis can be formulated with a set of basic operations. The approach discussed in this book has the potential for application in all areas of quantitative computer vision, image processing, and image analysis. In particular, it might help medical imaging finally become a scientific discipline that is characterized by the classical paradigms of observation, measurement, and error awareness.
This book is comprised of eight chapters. After an introduction to the goals of the book (Chapter 1), we present a brief review of PDEs and their numerical treatment (Chapter 2), PDE-based image processing (Chapter 3), and the numerics of stochastic PDEs (Chapter 4). We then proceed to define the concept of stochastic images (Chapter 5), describe how to accomplish image processing and computer vision with stochastic images (Chapter 6), and demonstrate the use of these principles for accomplishing sensitivity analysis (Chapter 7). Chapter 8 concludes the book and highlights new research topics for the future.
商品描述(中文翻譯)
在醫療或科學影像數據分析以及工業場景等影像處理和計算機視覺應用中,影像被用作輸入測量數據。良好的科學實踐要求適當的測量必須配備誤差和不確定性估計。對於許多應用來說,不僅測量值,還有它們的誤差和不確定性,應該——而且越來越頻繁地——在進一步處理時被考慮進去。這種誤差和不確定性傳播必須在每個處理步驟中進行,以便最終結果能夠提供可靠的精確度估計。
本書的目標是向讀者介紹基於偏微分方程(PDEs)的計算機視覺、影像處理和影像分析領域中不確定性量化和誤差傳播的最新進展。它提出了一個概念,通過一組基本操作來表述誤差傳播和靈敏度分析。本書中討論的方法在所有定量計算機視覺、影像處理和影像分析的領域中都有應用的潛力。特別是,它可能有助於醫學影像最終成為一個以觀察、測量和誤差意識的經典範式為特徵的科學學科。
本書由八個章節組成。在介紹本書目標的第一章之後,我們簡要回顧了偏微分方程及其數值處理(第二章)、基於偏微分方程的影像處理(第三章)以及隨機偏微分方程的數值方法(第四章)。接著,我們定義隨機影像的概念(第五章),描述如何利用隨機影像進行影像處理和計算機視覺(第六章),並展示這些原則在靈敏度分析中的應用(第七章)。第八章總結了本書並強調了未來的新研究主題。