An Introduction to Laplacian Spectral Distances and Kernels: Theory, Computation, and Applications (Synthesis Lectures on Visual Computing)
暫譯: 拉普拉斯光譜距離與核的介紹:理論、計算與應用(視覺計算綜合講座)
Giuseppe Patanè
- 出版商: Morgan & Claypool
- 出版日期: 2017-07-05
- 售價: $1,810
- 貴賓價: 9.5 折 $1,720
- 語言: 英文
- 頁數: 140
- 裝訂: Paperback
- ISBN: 1681731398
- ISBN-13: 9781681731391
海外代購書籍(需單獨結帳)
商品描述
In geometry processing and shape analysis, several applications have been addressed through the properties of the Laplacian spectral kernels and distances, such as commute time, biharmonic, diffusion, and wave distances.
Within this context, this book is intended to provide a common background on the definition and computation of the Laplacian spectral kernels and distances for geometry processing and shape analysis. To this end, we define a unified representation of the isotropic and anisotropic discrete Laplacian operator on surfaces and volumes; then, we introduce the associated differential equations, i.e., the harmonic equation, the Laplacian eigenproblem, and the heat equation. Filtering the Laplacian spectrum, we introduce the Laplacian spectral distances, which generalize the commute-time, biharmonic, diffusion, and wave distances, and their discretization in terms of the Laplacian spectrum. As main applications, we discuss the design of smooth functions and the Laplacian smoothing of noisy scalar functions.
All the reviewed numerical schemes are discussed and compared in terms of robustness, approximation accuracy, and computational cost, thus supporting the reader in the selection of the most appropriate with respect to shape representation, computational resources, and target application.
商品描述(中文翻譯)
在幾何處理和形狀分析中,透過拉普拉斯光譜核和距離的特性,已經解決了幾個應用問題,例如通勤時間、雙調和、擴散和波動距離。
在這個背景下,本書旨在提供有關拉普拉斯光譜核和距離的定義及計算的共同基礎,以便於幾何處理和形狀分析。為此,我們定義了在表面和體積上各向同性和各向異性離散拉普拉斯算子的統一表示;然後,我們介紹了相關的微分方程,即和諧方程、拉普拉斯特徵問題和熱方程。通過過濾拉普拉斯光譜,我們引入了拉普拉斯光譜距離,這些距離概括了通勤時間、雙調和、擴散和波動距離,並在拉普拉斯光譜的框架下進行離散化。作為主要應用,我們討論了平滑函數的設計以及對噪聲標量函數的拉普拉斯平滑。
所有回顧的數值方案都在穩健性、近似精度和計算成本方面進行了討論和比較,從而幫助讀者根據形狀表示、計算資源和目標應用選擇最合適的方案。