Radon Transforms and the Rigidity of the Grassmannians
暫譯: 拉東變換與格拉斯曼流形的剛性

Jacques Gasqui, Hubert Goldschmidt

  • 出版商: Princeton University
  • 出版日期: 2004-01-25
  • 售價: $888
  • 語言: 英文
  • 頁數: 384
  • 裝訂: Paperback
  • ISBN: 069111899X
  • ISBN-13: 9780691118994
  • 下單後立即進貨 (約5~7天)

商品描述

This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric?

The authors comprehensively treat the results concerning Radon transforms and the infinitesimal versions of these two problems. Their main result implies that most Grassmannians are spectrally rigid to the first order. This is particularly important, for there are still few isospectrality results for positively curved spaces and these are the first such results for symmetric spaces of compact type of rank >1. The authors exploit the theory of overdetermined partial differential equations and harmonic analysis on symmetric spaces to provide criteria for infinitesimal rigidity that apply to a large class of spaces.

A substantial amount of basic material about Riemannian geometry, symmetric spaces, and Radon transforms is included in a clear and elegant presentation that will be useful to researchers and advanced students in differential geometry.

商品描述(中文翻譯)

這本書首次統一檢視了緊緻型對稱空間上的 Radon 變換與黎曼幾何中兩個基本剛性問題的無窮小版本之間的關係。其主要焦點是光譜剛性問題:給定的緊緻型黎曼對稱空間的度量是否可以通過其拉普拉斯算子的光譜來表徵?它還探討了一個根植於 Blaschke 問題的問題:在一個射影空間中,所有測地線都是閉合且長度相同的黎曼度量是否與標準度量等距?

作者全面處理了有關 Radon 變換及這兩個問題的無窮小版本的結果。他們的主要結果暗示大多數 Grassmannian 在一階上是光譜剛性的。這一點特別重要,因為對於正曲率空間,仍然只有少數的等光譜性結果,而這些是對於秩大於 1 的緊緻型對稱空間的首個此類結果。作者利用過確定偏微分方程的理論和對稱空間上的調和分析,提供了適用於大類空間的無窮小剛性的標準。

書中包含了大量有關黎曼幾何、對稱空間和 Radon 變換的基本材料,以清晰而優雅的方式呈現,將對微分幾何的研究者和高級學生非常有用。