Non-Boolean Computing with Spintronic Devices (Foundations and Trends(r) in Electronic Design Automation)
暫譯: 非布林計算與自旋電子裝置(電子設計自動化的基礎與趨勢)

Kawsher A. Roxy, Sanjukta Bhanja

  • 出版商: Now Publishers Inc
  • 出版日期: 2018-01-17
  • 售價: $3,320
  • 貴賓價: 9.5$3,154
  • 語言: 英文
  • 頁數: 142
  • 裝訂: Paperback
  • ISBN: 1680833626
  • ISBN-13: 9781680833621
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

One of the most promising emerging non-volatile memories is magnetic tunnel junction (MTJ); this is a Spintronic element where electronic charge and spin are both used for storing and manipulating digital information. Indeed, many companies have proposed this as a universal memory targeting embedded RAM, DRAM, and storage class memory domains primarily due to features like non-volatility, ultra-low power consumption, high endurance, rad-hardness, etc. However, the increasingly popular data-centric approach for solving non-Boolean problems, often called in memory computing, may also benefit by exploiting this kind of device.

Non-Boolean Computing with Spintronic Devices explores the latest research areas that employ spintronic devices for non-Boolean computing purposes. Due to the physical limits of traditional computing frameworks, researchers have focused on unconventional solving paradigms like neural networks, associative memory, neuromorphic computing, etc. This monograph also illustrates a novel mechanism to solve computationally expensive binary quadratic optimization problems via an energy minimization framework of nanomagnets. This hardware platform opens the possibility of achieving energy efficient processors such as the Ising model and Bayesian inference co-processor. However, the technology readiness level of spintronic devices is still maturing, so the research on the computing frameworks based on these devices is not static, rather dynamic. This monograph surveys the research to date and is an ideal reference for anyone interested in how the field is developing.

商品描述(中文翻譯)

最具潛力的新興非揮發性記憶體之一是磁隧道接合(MTJ);這是一種自旋電子學元件,利用電子的電荷和自旋來儲存和操作數位資訊。事實上,許多公司已將其提議為一種通用記憶體,目標是嵌入式 RAM、DRAM 和儲存類記憶體領域,主要是因為其具備非揮發性、超低功耗、高耐用性、抗輻射等特性。然而,越來越流行的以數據為中心的方法來解決非布林問題,通常稱為記憶體計算,也可能透過利用這種裝置而受益。

利用自旋電子學裝置的非布林計算探討了最新的研究領域,這些領域使用自旋電子學裝置進行非布林計算。由於傳統計算框架的物理限制,研究人員專注於非常規的解決範式,如神經網絡、聯想記憶、類神經計算等。本專著還說明了一種新穎的機制,通過納米磁體的能量最小化框架來解決計算上昂貴的二元二次優化問題。這一硬體平台開啟了實現能效處理器的可能性,例如伊辛模型和貝葉斯推斷協處理器。然而,自旋電子學裝置的技術成熟度仍在發展中,因此基於這些裝置的計算框架的研究並非靜態,而是動態的。本專著調查了迄今為止的研究,是對於任何對該領域發展感興趣的人來說的理想參考資料。