Correlation Clustering: Morgan & Claypool Publishers
暫譯: 相關性聚類:Morgan & Claypool 出版社

Bonchi, Francesco, García-Soriano, David, Gullo, Francesco

  • 出版商: Morgan & Claypool
  • 出版日期: 2022-03-08
  • 售價: $1,930
  • 貴賓價: 9.5$1,834
  • 語言: 英文
  • 頁數: 150
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1636393233
  • ISBN-13: 9781636393230
  • 相關分類: GAN 生成對抗網絡
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Given a set of objects and a pairwise similarity measure between them, the goal of correlation clustering is to partition the objects in a set of clusters to maximize the similarity of the objects within the same cluster and minimize the similarity of the objects in different clusters. In most of the variants of correlation clustering, the number of clusters is not a given parameter; instead, the optimal number of clusters is automatically determined.

Correlation clustering is perhaps the most natural formulation of clustering: as it just needs a definition of similarity, its broad generality makes it applicable to a wide range of problems in different contexts, and, particularly, makes it naturally suitable to clustering structured objects for which feature vectors can be difficult to obtain. Despite its simplicity, generality, and wide applicability, correlation clustering has so far received much more attention from an algorithmic-theory perspective than from the data-mining community. The goal of this lecture is to show how correlation clustering can be a powerful addition to the toolkit of a data-mining researcher and practitioner, and to encourage further research in the area.

商品描述(中文翻譯)

給定一組物件及其之間的成對相似性度量,相關性聚類的目標是將物件劃分為一組集群,以最大化同一集群內物件的相似性,並最小化不同集群內物件的相似性。在大多數相關性聚類的變體中,集群的數量並不是一個給定的參數;相反,最佳的集群數量是自動確定的。

相關性聚類或許是聚類最自然的表述:因為它只需要一個相似性的定義,其廣泛的通用性使其適用於不同背景下的各種問題,特別是使其自然適合於聚類結構化物件,因為這些物件的特徵向量可能難以獲得。儘管其簡單性、通用性和廣泛適用性,相關性聚類迄今為止在算法理論的視角上受到的關注遠超過數據挖掘社群。這次講座的目標是展示相關性聚類如何成為數據挖掘研究者和實踐者工具箱中的一個強大補充,並鼓勵在該領域進一步研究。