Multi-Objective Decision Making (Synthesis Lectures on Artificial Intelligence and Machine Learning)
暫譯: 多目標決策制定(人工智慧與機器學習綜合講座)

Diederik M. Roijers, Shimon Whiteson

  • 出版商: Morgan & Claypool
  • 出版日期: 2017-04-20
  • 售價: $1,610
  • 貴賓價: 9.5$1,530
  • 語言: 英文
  • 頁數: 130
  • 裝訂: Paperback
  • ISBN: 1627059601
  • ISBN-13: 9781627059602
  • 相關分類: 人工智慧Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Many real-world decision problems have multiple objectives. For example, when choosing a medical treatment plan, we want to maximize the efficacy of the treatment, but also minimize the side effects. These objectives typically conflict, e.g., we can often increase the efficacy of the treatment, but at the cost of more severe side effects. In this book, we outline how to deal with multiple objectives in decision-theoretic planning and reinforcement learning algorithms. To illustrate this, we employ the popular problem classes of multi-objective Markov decision processes (MOMDPs) and multi-objective coordination graphs (MO-CoGs).

First, we discuss different use cases for multi-objective decision making, and why they often necessitate explicitly multi-objective algorithms. We advocate a utility-based approach to multi-objective decision making, i.e., that what constitutes an optimal solution to a multi-objective decision problem should be derived from the available information about user utility. We show how different assumptions about user utility and what types of policies are allowed lead to different solution concepts, which we outline in a taxonomy of multi-objective decision problems.

Second, we show how to create new methods for multi-objective decision making using existing single-objective methods as a basis. Focusing on planning, we describe two ways to creating multi-objective algorithms: in the inner loop approach, the inner workings of a single-objective method are adapted to work with multi-objective solution concepts; in the outer loop approach, a wrapper is created around a single-objective method that solves the multi-objective problem as a series of single-objective problems. After discussing the creation of such methods for the planning setting, we discuss how these approaches apply to the learning setting.

Next, we discuss three promising application domains for multi-objective decision making algorithms: energy, health, and infrastructure and transportation. Finally, we conclude by outlining important open problems and promising future directions.

商品描述(中文翻譯)

許多現實世界的決策問題具有多重目標。例如,在選擇醫療治療計劃時,我們希望最大化治療的效果,但同時也要最小化副作用。這些目標通常是相互衝突的,例如,我們通常可以提高治療的效果,但代價是更嚴重的副作用。在本書中,我們概述了如何在決策理論規劃和強化學習算法中處理多重目標。為了說明這一點,我們採用了多目標馬可夫決策過程(multi-objective Markov decision processes, MOMDPs)和多目標協調圖(multi-objective coordination graphs, MO-CoGs)這兩個流行的問題類別。

首先,我們討論多目標決策的不同使用案例,以及為什麼這些案例通常需要明確的多目標算法。我們主張基於效用的多目標決策方法,即,對於多目標決策問題,什麼構成最佳解應該基於用戶效用的可用信息。我們展示了對用戶效用的不同假設以及允許的政策類型如何導致不同的解決概念,並在多目標決策問題的分類法中概述了這些概念。

其次,我們展示了如何利用現有的單目標方法作為基礎來創建新的多目標決策方法。專注於規劃,我們描述了創建多目標算法的兩種方法:在內部循環方法中,單目標方法的內部運作被調整為適用於多目標解決概念;在外部循環方法中,圍繞單目標方法創建一個包裝器,將多目標問題作為一系列單目標問題來解決。在討論了這些方法在規劃環境中的創建後,我們還討論了這些方法如何應用於學習環境。

接下來,我們討論了多目標決策算法的三個有前景的應用領域:能源、健康以及基礎設施和交通。最後,我們通過概述重要的開放問題和有前景的未來方向來結束本書。