Mining Latent Entity Structures
暫譯: 挖掘潛在實體結構
Chi Wang, Jiawei Han
- 出版商: Morgan & Claypool
- 出版日期: 2015-03-01
- 售價: $2,250
- 貴賓價: 9.5 折 $2,138
- 語言: 英文
- 頁數: 159
- 裝訂: Paperback
- ISBN: 1627056602
- ISBN-13: 9781627056601
海外代購書籍(需單獨結帳)
相關主題
商品描述
The ""big data"" era is characterized by an explosion of information in the form of digital data collections, ranging from scientific knowledge, to social media, news, and everyone's daily life. Examples of such collections include scientific publications, enterprise logs, news articles, social media, and general web pages. Valuable knowledge about multi-typed entities is often hidden in the unstructured or loosely structured, interconnected data. Mining latent structures around entities uncovers hidden knowledge such as implicit topics, phrases, entity roles and relationships. In this monograph, we investigate the principles and methodologies of mining latent entity structures from massive unstructured and interconnected data. We propose a text-rich information network model for modeling data in many different domains. This leads to a series of new principles and powerful methodologies for mining latent structures, including (1) latent topical hierarchy, (2) quality topical phrases, (3) entity roles in hierarchical topical communities, and (4) entity relations. This book also introduces applications enabled by the mined structures and points out some promising research directions.
商品描述(中文翻譯)
「大數據」時代的特徵是數位數據集合的資訊爆炸,這些數據集合涵蓋了科學知識、社交媒體、新聞以及每個人的日常生活。這些數據集合的例子包括科學出版物、企業日誌、新聞文章、社交媒體和一般網頁。關於多類型實體的有價值知識通常隱藏在非結構化或鬆散結構的互聯數據中。挖掘圍繞實體的潛在結構可以揭示隱藏的知識,例如隱含主題、短語、實體角色和關係。在這本專著中,我們探討從大量非結構化和互聯數據中挖掘潛在實體結構的原則和方法論。我們提出了一個文本豐富的信息網絡模型,用於建模許多不同領域的數據。這導致了一系列新的原則和強大的方法論來挖掘潛在結構,包括 (1) 潛在主題層次結構,(2) 高品質主題短語,(3) 層次主題社群中的實體角色,以及 (4) 實體關係。本書還介紹了由挖掘結構所啟用的應用,並指出了一些有前景的研究方向。