Combating Bad Weather Part II: Fog Removal from Image and Video
暫譯: 對抗惡劣天氣第二部分:影像與影片中的霧霾去除
Sudipta Mukhopadhyay, Abhishek Kumar Tripathi
- 出版商: Morgan & Claypool
- 出版日期: 2015-01-01
- 售價: $1,930
- 貴賓價: 9.5 折 $1,834
- 語言: 英文
- 頁數: 84
- 裝訂: Paperback
- ISBN: 162705586X
- ISBN-13: 9781627055864
海外代購書籍(需單獨結帳)
相關主題
商品描述
Every year lives and properties are lost in road accidents. About one-fourth of these accidents are due to low vision in foggy weather. At present, there is no algorithm that is specifically designed for the removal of fog from videos. Application of a single-image fog removal algorithm over each video frame is a time-consuming and costly affair. It is demonstrated that with the intelligent use of temporal redundancy, fog removal algorithms designed for a single image can be extended to the real-time video application. Results confirm that the presented framework used for the extension of the fog removal algorithms for images to videos can reduce the complexity to a great extent with no loss of perceptual quality. This paves the way for the real-life application of the video fog removal algorithm. In order to remove fog, an efficient fog removal algorithm using anisotropic diffusion is developed. The presented fog removal algorithm uses new dark channel assumption and anisotropic diffusion for the initialization and refinement of the airlight map, respectively. Use of anisotropic diffusion helps to estimate the better airlight map estimation. The said fog removal algorithm requires a single image captured by uncalibrated camera system. The anisotropic diffusion-based fog removal algorithm can be applied in both RGB and HSI color space. This book shows that the use of HSI color space reduces the complexity further. The said fog removal algorithm requires pre- and post-processing steps for the better restoration of the foggy image. These pre- and post-processing steps have either data-driven or constant parameters that avoid the user intervention. Presented fog removal algorithm is independent of the intensity of the fog, thus even in the case of the heavy fog presented algorithm performs well. Qualitative and quantitative results confirm that the presented fog removal algorithm outperformed previous algorithms in terms of perceptual quality, color fidelity and execution time. The work presented in this book can find wide application in entertainment industries, transportation, tracking and consumer electronics.
商品描述(中文翻譯)
每年因道路事故而失去生命和財產的事件層出不窮。其中約四分之一的事故是由於在霧天視線不良所造成。目前,尚無專門設計用於去除視頻中霧氣的演算法。對每個視頻幀應用單幅圖像去霧演算法是一項耗時且成本高昂的工作。研究表明,透過智能利用時間冗餘,專為單幅圖像設計的去霧演算法可以擴展到實時視頻應用中。結果確認,所提出的框架將圖像的去霧演算法擴展到視頻中,可以在不損失感知質量的情況下大幅降低複雜性。這為視頻去霧演算法的實際應用鋪平了道路。為了去除霧氣,開發了一種使用各向異性擴散的高效去霧演算法。所提出的去霧演算法分別使用新的暗通道假設和各向異性擴散來初始化和細化空氣光圖。使用各向異性擴散有助於更好地估計空氣光圖。該去霧演算法僅需一幅由未校準相機系統捕獲的單幅圖像。基於各向異性擴散的去霧演算法可以應用於RGB和HSI色彩空間。這本書顯示,使用HSI色彩空間進一步降低了複雜性。該去霧演算法需要前處理和後處理步驟,以更好地恢復霧霾圖像。這些前處理和後處理步驟具有數據驅動或常數參數,避免了用戶干預。所提出的去霧演算法不依賴於霧的強度,因此即使在重霧的情況下,該演算法也能良好運行。定性和定量結果確認,所提出的去霧演算法在感知質量、色彩保真度和執行時間方面超越了先前的演算法。本書中提出的工作可以在娛樂產業、交通運輸、追蹤和消費電子產品中找到廣泛應用。