Combating Bad Weather Part I: Rain Removal from Video (Synthesis Lectures on Image, Video, & Multimedia Processing)
暫譯: 對抗惡劣天氣第一部分:從影片中去除雨水(影像、影片與多媒體處理綜合講座)

Sudipta Mukhopadhyay, Abhishek Kumar Tripathi

  • 出版商: Morgan & Claypool
  • 出版日期: 2014-12-01
  • 售價: $1,930
  • 貴賓價: 9.5$1,834
  • 語言: 英文
  • 頁數: 93
  • 裝訂: Paperback
  • ISBN: 1627055762
  • ISBN-13: 9781627055765
  • 海外代購書籍(需單獨結帳)

商品描述

Current vision systems are designed to perform in normal weather condition. However, no one can escape from severe weather conditions. Bad weather reduces scene contrast and visibility, which results in degradation in the performance of various computer vision algorithms such as object tracking, segmentation and recognition. Thus, current vision systems must include some mechanisms that enable them to perform up to the mark in bad weather conditions such as rain and fog. Rain causes the spatial and temporal intensity variations in images or video frames. These intensity changes are due to the random distribution and high velocities of the raindrops. Fog causes low contrast and whiteness in the image and leads to a shift in the color. This book has studied rain and fog from the perspective of vision. The book has two main goals: 1) removal of rain from videos captured by a moving and static camera, 2) removal of the fog from images and videos captured by a moving single uncalibrated camera system. The book begins with a literature survey. Pros and cons of the selected prior art algorithms are described, and a general framework for the development of an efficient rain removal algorithm is explored. Temporal and spatiotemporal properties of rain pixels are analyzed and using these properties, two rain removal algorithms for the videos captured by a static camera are developed. For the removal of rain, temporal and spatiotemporal algorithms require fewer numbers of consecutive frames which reduces buffer size and delay. These algorithms do not assume the shape, size and velocity of raindrops which make it robust to different rain conditions (i.e., heavy rain, light rain and moderate rain). In a practical situation, there is no ground truth available for rain video. Thus, no reference quality metric is very useful in measuring the efficacy of the rain removal algorithms. Temporal variance and spatiotemporal variance are presented in this book as no reference quality metrics.

商品描述(中文翻譯)

目前的視覺系統設計是為了在正常天氣條件下運作。然而,沒有人能夠逃避惡劣的天氣條件。惡劣的天氣會降低場景的對比度和可見度,這會導致各種計算機視覺算法(如物體追蹤、分割和識別)的性能下降。因此,當前的視覺系統必須包含一些機制,使其能夠在惡劣天氣條件下(如雨和霧)達到預期的性能。雨水會導致影像或視頻幀中的空間和時間強度變化。這些強度變化是由於雨滴的隨機分佈和高速度造成的。霧會導致影像中的低對比度和白色化,並導致顏色的偏移。本書從視覺的角度研究了雨和霧。本書有兩個主要目標:1)去除由移動和靜態相機拍攝的視頻中的雨水,2)去除由移動的單一未校準相機系統拍攝的影像和視頻中的霧。本書首先進行文獻調查,描述所選擇的先前技術算法的優缺點,並探討開發高效雨水去除算法的一般框架。分析雨像素的時間和空間時間特性,並利用這些特性,為靜態相機拍攝的視頻開發了兩種雨水去除算法。為了去除雨水,時間和空間時間算法需要較少的連續幀數,這樣可以減少緩衝區大小和延遲。這些算法不假設雨滴的形狀、大小和速度,使其對不同的雨況(即大雨、小雨和中雨)具有穩健性。在實際情況下,雨水視頻沒有可用的真實數據。因此,沒有參考質量指標在測量雨水去除算法的有效性方面非常有用。本書將時間變異和空間時間變異作為無參考質量指標進行介紹。