Learning to Rank for Information Retrieval and Natural Language Processing: Second Edition (Synthesis Lectures on Human Language Technologies)
暫譯: 資訊檢索與自然語言處理的學習排序:第二版(人類語言技術綜合講座)

Hang Li

  • 出版商: Morgan & Claypool
  • 出版日期: 2014-10-01
  • 售價: $1,620
  • 貴賓價: 9.5$1,539
  • 語言: 英文
  • 頁數: 122
  • 裝訂: Paperback
  • ISBN: 1627055843
  • ISBN-13: 9781627055840
  • 海外代購書籍(需單獨結帳)

商品描述

Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank is useful for many applications in information retrieval, natural language processing, and data mining. Intensive studies have been conducted on its problems recently, and significant progress has been made. This lecture gives an introduction to the area including the fundamental problems, major approaches, theories, applications, and future work.

The author begins by showing that various ranking problems in information retrieval and natural language processing can be formalized as two basic ranking tasks, namely ranking creation (or simply ranking) and ranking aggregation. In ranking creation, given a request, one wants to generate a ranking list of offerings based on the features derived from the request and the offerings. In ranking aggregation, given a request, as well as a number of ranking lists of offerings, one wants to generate a new ranking list of the offerings.

Ranking creation (or ranking) is the major problem in learning to rank. It is usually formalized as a supervised learning task. The author gives detailed explanations on learning for ranking creation and ranking aggregation, including training and testing, evaluation, feature creation, and major approaches. Many methods have been proposed for ranking creation. The methods can be categorized as the pointwise, pairwise, and listwise approaches according to the loss functions they employ. They can also be categorized according to the techniques they employ, such as the SVM based, Boosting based, and Neural Network based approaches.

The author also introduces some popular learning to rank methods in details. These include: PRank, OC SVM, McRank, Ranking SVM, IR SVM, GBRank, RankNet, ListNet & ListMLE, AdaRank, SVM MAP, SoftRank, LambdaRank, LambdaMART, Borda Count, Markov Chain, and CRanking.

The author explains several example applications of learning to rank including web search, collaborative filtering, definition search, keyphrase extraction, query dependent summarization, and re-ranking in machine translation.

A formulation of learning for ranking creation is given in the statistical learning framework. Ongoing and future research directions for learning to rank are also discussed.

Table of Contents: Learning to Rank / Learning for Ranking Creation / Learning for Ranking Aggregation / Methods of Learning to Rank / Applications of Learning to Rank / Theory of Learning to Rank / Ongoing and Future Work

商品描述(中文翻譯)

學習排序(Learning to rank)是指用於訓練模型以執行排序任務的機器學習技術。學習排序在資訊檢索、自然語言處理和資料挖掘等多個應用中非常有用。最近對其問題進行了深入研究,並取得了顯著進展。本講座將介紹該領域的基本問題、主要方法、理論、應用及未來的研究方向。

作者首先指出,資訊檢索和自然語言處理中的各種排序問題可以形式化為兩個基本的排序任務,即排序創建(ranking creation,簡稱排序)和排序聚合(ranking aggregation)。在排序創建中,給定一個請求,目的是根據從請求和提供項目中衍生的特徵生成一個提供項目的排序列表。在排序聚合中,給定一個請求以及多個提供項目的排序列表,目的是生成一個新的提供項目的排序列表。

排序創建(或排序)是學習排序中的主要問題。它通常被形式化為一個監督學習任務。作者詳細解釋了排序創建和排序聚合的學習過程,包括訓練和測試、評估、特徵創建和主要方法。許多方法已被提出用於排序創建。這些方法可以根據所使用的損失函數分為點對點(pointwise)、對偶(pairwise)和列表(listwise)方法。它們也可以根據所採用的技術進行分類,例如基於支持向量機(SVM)、基於提升(Boosting)和基於神經網絡(Neural Network)的方法。

作者還詳細介紹了一些流行的學習排序方法,包括:PRank、OC SVM、McRank、Ranking SVM、IR SVM、GBRank、RankNet、ListNet & ListMLE、AdaRank、SVM MAP、SoftRank、LambdaRank、LambdaMART、Borda Count、馬可夫鏈(Markov Chain)和CRanking。

作者解釋了學習排序的幾個應用示例,包括網頁搜索、協同過濾、定義搜索、關鍵詞提取、查詢依賴的摘要生成以及機器翻譯中的重新排序。

在統計學習框架中給出了排序創建的學習公式。還討論了學習排序的持續和未來研究方向。

目錄:學習排序 / 排序創建的學習 / 排序聚合的學習 / 學習排序的方法 / 學習排序的應用 / 學習排序的理論 / 持續和未來的工作