Learning from Multiple Social Networks
暫譯: 從多個社交網絡中學習
Liqiang Nie, Xuemeng Song, Tat-Seng Chua
- 出版商: Morgan & Claypool
- 出版日期: 2016-04-21
- 售價: $1,780
- 貴賓價: 9.5 折 $1,691
- 語言: 英文
- 頁數: 120
- 裝訂: Paperback
- ISBN: 1627054243
- ISBN-13: 9781627054249
海外代購書籍(需單獨結帳)
相關主題
商品描述
With the proliferation of social network services, more and more social users, such as individuals and organizations, are simultaneously involved in multiple social networks for various purposes. In fact, multiple social networks characterize the same social users from different perspectives, and their contexts are usually consistent or complementary rather than independent. Hence, as compared to using information from a single social network, appropriate aggregation of multiple social networks offers us a better way to comprehensively understand the given social users.
Learning across multiple social networks brings opportunities to new services and applications as well as new insights on user online behaviors, yet it raises tough challenges: (1) How can we map different social network accounts to the same social users? (2) How can we complete the item-wise and block-wise missing data? (3) How can we leverage the relatedness among sources to strengthen the learning performance? And (4) How can we jointly model the dual-heterogeneities: multiple tasks exist for the given application and each task has various features from multiple sources? These questions have been largely unexplored to date.
We noticed this timely opportunity, and in this book we present some state-of-the-art theories and novel practical applications on aggregation of multiple social networks. In particular, we first introduce multi-source dataset construction. We then introduce how to effectively and efficiently complete the item-wise and block-wise missing data, which are caused by the inactive social users in some social networks. We next detail the proposed multi-source mono-task learning model and its application in volunteerism tendency prediction. As a counterpart, we also present a mono-source multi-task learning model and apply it to user interest inference. We seamlessly unify these models with the so-called multi-source multi-task learning, and demonstrate several application scenarios, such as occupation prediction. Finally, we conclude the book and figure out the future research directions in multiple social network learning, including the privacy issues and source complementarity modeling.
This is preliminary research on learning from multiple social networks, and we hope it can inspire more active researchers to work on this exciting area. If we have seen further it is by standing on the shoulders of giants.
商品描述(中文翻譯)
隨著社交網路服務的普及,越來越多的社交用戶,例如個人和組織,因各種目的同時參與多個社交網路。事實上,多個社交網路從不同的角度特徵化相同的社交用戶,而它們的背景通常是一致或互補的,而非獨立的。因此,與使用單一社交網路的信息相比,適當地聚合多個社交網路為我們提供了一種更好的方式來全面理解特定的社交用戶。
跨多個社交網路的學習為新服務和應用程序帶來了機會,以及對用戶在線行為的新見解,但也提出了嚴峻的挑戰:(1)我們如何將不同的社交網路帳戶映射到相同的社交用戶?(2)我們如何完成項目級和區塊級的缺失數據?(3)我們如何利用來源之間的相關性來加強學習性能?以及(4)我們如何共同建模雙重異質性:針對特定應用存在多個任務,每個任務具有來自多個來源的各種特徵?這些問題至今仍未得到充分探索。
我們注意到這一及時的機會,在本書中,我們介紹了一些關於多個社交網路聚合的最先進理論和新穎的實用應用。特別是,我們首先介紹多來源數據集的構建。然後,我們介紹如何有效且高效地完成由某些社交網路中不活躍的社交用戶所造成的項目級和區塊級缺失數據。我們接下來詳細說明所提出的多來源單任務學習模型及其在志願服務傾向預測中的應用。作為對應,我們還提出了一個單來源多任務學習模型,並將其應用於用戶興趣推斷。我們無縫地將這些模型統一為所謂的多來源多任務學習,並展示幾個應用場景,例如職業預測。最後,我們總結本書並探討多個社交網路學習的未來研究方向,包括隱私問題和來源互補性建模。
這是關於從多個社交網路學習的初步研究,我們希望它能激勵更多積極的研究者在這一令人興奮的領域中工作。如果我們能看到更遠的地方,那是因為站在巨人的肩膀上。