Compatibility Modeling: Data and Knowledge Applications for Clothing Matching
暫譯: 相容性建模:服裝配對的數據與知識應用

Song, Xuemeng, Nie, Liqiang, Wang, Yinglong

  • 出版商: Morgan & Claypool
  • 出版日期: 2019-10-31
  • 售價: $2,250
  • 貴賓價: 9.5$2,138
  • 語言: 英文
  • 頁數: 140
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1681736683
  • ISBN-13: 9781681736686
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Nowadays, fashion has become an essential aspect of people's daily life.

As each outfit usually comprises several complementary items, such as a top, bottom, shoes, and accessories, a proper outfit largely relies on the harmonious matching of these items. Nevertheless, not everyone is good at outfit composition, especially those who have a poor fashion aesthetic. Fortunately, in recent years the number of online fashion-oriented communities, like IQON and Chictopia, as well as e-commerce sites, like Amazon and eBay, has grown. The tremendous amount of real-world data regarding people's various fashion behaviors has opened a door to automatic clothing matching.

Despite its significant value, compatibility modeling for clothing matching that assesses the compatibility score for a given set of (equal or more than two) fashion items, e.g., a blouse and a skirt, yields tough challenges: (a) the absence of comprehensive benchmark; (b) comprehensive compatibility modeling with the multi-modal feature variables is largely untapped; (c) how to utilize the domain knowledge to guide the machine learning; (d) how to enhance the interpretability of the compatibility modeling; and (e) how to model the user factor in the personalized compatibility modeling. These challenges have been largely unexplored to date.

In this book, we shed light on several state-of-the-art theories on compatibility modeling. In particular, to facilitate the research, we first build three large-scale benchmark datasets from different online fashion websites, including IQON and Amazon. We then introduce a general data-driven compatibility modeling scheme based on advanced neural networks. To make use of the abundant fashion domain knowledge, i.e., clothing matching rules, we next present a novel knowledge guided compatibility modeling framework. Thereafter, to enhance the model interpretability, we put forward a prototype wise interpretable compatibility modeling approach. Following that, noticing the subjective aesthetics of users, we extend the general compatibility modeling to the personalized version. Moreover, we further study the real-world problem of personalized capsule wardrobe creation, aiming to generate a minimum collection of garments that is both compatible and suitable for the user. Finally, we conclude the book and present future research directions, such as the generative compatibility modeling, virtual try-on with arbitrary poses, and clothing generation.

商品描述(中文翻譯)

如今,時尚已成為人們日常生活中不可或缺的一部分。每套服裝通常由幾個互補的項目組成,例如上衣、下裝、鞋子和配飾,因此一套合適的服裝在很大程度上依賴於這些項目的和諧搭配。然而,並不是每個人都擅長服裝搭配,特別是那些時尚審美較差的人。幸運的是,近年來,像 IQON 和 Chictopia 這樣的在線時尚社區以及像 Amazon 和 eBay 這樣的電子商務網站數量不斷增長。關於人們各種時尚行為的龐大現實數據為自動服裝搭配打開了一扇大門。

儘管其價值顯著,服裝搭配的相容性建模,即評估一組(兩個或更多)時尚項目(例如上衣和裙子)的相容性分數,仍然面臨著嚴峻的挑戰:(a)缺乏全面的基準;(b)綜合相容性建模與多模態特徵變量的研究尚未充分開發;(c)如何利用領域知識來指導機器學習;(d)如何增強相容性建模的可解釋性;以及(e)如何在個性化相容性建模中建模用戶因素。這些挑戰至今仍未得到充分探索。

在本書中,我們闡明了幾個關於相容性建模的最先進理論。特別是,為了促進研究,我們首先從不同的在線時尚網站(包括 IQON 和 Amazon)建立了三個大規模基準數據集。然後,我們介紹了一種基於先進神經網絡的一般數據驅動相容性建模方案。為了利用豐富的時尚領域知識,即服裝搭配規則,我們接著提出了一種新穎的知識引導相容性建模框架。隨後,為了增強模型的可解釋性,我們提出了一種原型可解釋的相容性建模方法。接著,考慮到用戶的主觀審美,我們將一般相容性建模擴展到個性化版本。此外,我們進一步研究了個性化膠囊衣櫥創建的現實問題,旨在生成一個既相容又適合用戶的最小服裝集合。最後,我們總結了本書並提出未來的研究方向,例如生成相容性建模、任意姿勢的虛擬試穿和服裝生成。