Probabilistic Approaches to Recommendations (Paperback) (推薦的機率方法)

Nicola Barbieri, Giuseppe Manco, Ettore Ritacco

  • 出版商: Morgan & Claypool
  • 出版日期: 2014-05-01
  • 售價: $1,760
  • 貴賓價: 9.5$1,672
  • 語言: 英文
  • 頁數: 198
  • 裝訂: Paperback
  • ISBN: 1627052577
  • ISBN-13: 9781627052573
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

The importance of accurate recommender systems has been widely recognized by academia and industry, and recommendation is rapidly becoming one of the most successful applications of data mining and machine learning. Understanding and predicting the choices and preferences of users is a challenging task: real-world scenarios involve users behaving in complex situations, where prior beliefs, specific tendencies, and reciprocal influences jointly contribute to determining the preferences of users toward huge amounts of information, services, and products. Probabilistic modeling represents a robust formal mathematical framework to model these assumptions and study their effects in the recommendation process.

This book starts with a brief summary of the recommendation problem and its challenges and a review of some widely used techniques Next, we introduce and discuss probabilistic approaches for modeling preference data. We focus our attention on methods based on latent factors, such as mixture models, probabilistic matrix factorization, and topic models, for explicit and implicit preference data. These methods represent a significant advance in the research and technology of recommendation. The resulting models allow us to identify complex patterns in preference data, which can be exploited to predict future purchases effectively.

The extreme sparsity of preference data poses serious challenges to the modeling of user preferences, especially in the cases where few observations are available. Bayesian inference techniques elegantly address the need for regularization, and their integration with latent factor modeling helps to boost the performances of the basic techniques.

We summarize the strengths and weakness of several approaches by considering two different but related evaluation perspectives, namely, rating prediction and recommendation accuracy. Furthermore, we describe how probabilistic methods based on latent factors enable the exploitation of preference patterns in novel applications beyond rating prediction or recommendation accuracy.

We finally discuss the application of probabilistic techniques in two additional scenarios, characterized by the availability of side information besides preference data. In summary, the book categorizes the myriad probabilistic approaches to recommendations and provides guidelines for their adoption in real-world situations.

Table of Contents: Preface / The Recommendation Process / Probabilistic Models for Collaborative Filtering / Bayesian Modeling / Exploiting Probabilistic Models / Contextual Information / Social Recommender Systems / Conclusions / Bibliography / Authors' Biographies

商品描述(中文翻譯)

準確的推薦系統的重要性已被學術界和業界廣泛認可,推薦正迅速成為數據挖掘和機器學習中最成功的應用之一。理解和預測用戶的選擇和偏好是一項具有挑戰性的任務:現實世界的情境涉及用戶在複雜情況下的行為,其中先前的信念、特定的傾向和相互影響共同決定了用戶對大量信息、服務和產品的偏好。概率建模代表了一種穩健的正式數學框架,用於建模這些假設並研究其在推薦過程中的影響。

本書首先簡要總結了推薦問題及其挑戰,並回顧了一些廣泛使用的技術。接著,我們介紹並討論了用於建模偏好數據的概率方法。我們專注於基於潛在因子的技術,如混合模型、概率矩陣分解和主題模型,針對顯性和隱性偏好數據。這些方法在推薦的研究和技術上代表了顯著的進步。所得到的模型使我們能夠識別偏好數據中的複雜模式,這些模式可以有效地用於預測未來的購買行為。

偏好數據的極度稀疏性對用戶偏好的建模提出了嚴重挑戰,特別是在可用觀察數量較少的情況下。貝葉斯推斷技術優雅地解決了正則化的需求,並且與潛在因子建模的整合有助於提升基本技術的性能。

我們通過考慮兩個不同但相關的評估視角,即評分預測和推薦準確性,總結了幾種方法的優缺點。此外,我們描述了基於潛在因子的概率方法如何使得在評分預測或推薦準確性之外的新應用中利用偏好模式。

最後,我們討論了概率技術在兩個額外場景中的應用,這些場景的特點是除了偏好數據外還有側面信息的可用性。總之,本書對各種概率推薦方法進行了分類,並提供了在現實情況中採用這些方法的指導。

目錄:前言 / 推薦過程 / 協同過濾的概率模型 / 貝葉斯建模 / 利用概率模型 / 上下文信息 / 社交推薦系統 / 結論 / 參考文獻 / 作者簡介