Optimization and Mathematical Modeling in Computer Architecture (Paperback)
Tony Nowatzki, Michael Ferris, Karthikeyan Sankaralingam, Cristian Estan, Nilay Vaish, David Wood
- 出版商: Morgan & Claypool
- 出版日期: 2013-09-01
- 售價: $1,580
- 貴賓價: 9.5 折 $1,501
- 語言: 英文
- 頁數: 158
- 裝訂: Paperback
- ISBN: 1627052097
- ISBN-13: 9781627052092
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$820$648 -
$600$510 -
$590$502 -
$420$332 -
$480$432 -
$520$411 -
$784$743 -
$2,400$2,280 -
$580$458 -
$480$408 -
$480$408 -
$420$332 -
$350$333 -
$940$700 -
$1,980$1,881 -
$480$374 -
$450$356 -
$650$514 -
$249$212 -
$520$411 -
$480$379 -
$780$616 -
$280$218 -
$400$316 -
$520$411
相關主題
商品描述
In the last few decades computer systems and the underlying hardware have steadily become larger and more complex. The need to increase their efficiency through architectural innovation has not abated, but quantitatively evaluating the effect of various choices has become more difficult. Performance and resource consumption are determined by complex interactions between many modules, each with many possible alternative implementations. We need powerful computer programs to explore large design spaces, but the traditional approach of developing simulators, building prototypes, or writing heuristic-based algorithms in traditional programming languages is often tedious and slow. Fortunately mathematical optimization has made great advances in theory, and many fast commercial and academic solvers are now available. In this book we motivate and describe the use of mathematical modeling, specifically optimization based on mixed integer linear programming (MILP) as a way to design and evaluate computer systems. The major advantage is that the architect or system software writer only needs to describe what the problem is, not how to find a good solution. This greatly speeds up their work and, as our case studies show, it can often lead to better solutions than the traditional approach.
In this book we give an overview of modeling techniques used to describe computer systems to mathematical optimization tools. We give a brief introduction to various classes of mathematical optimization frameworks with special focus on mixed integer linear programming which provides a good balance between solver time and expressiveness. We present four detailed case studies -- instruction set customization, data center resource management, spatial architecture scheduling, and resource allocation in tiled architectures -- showing how MILP can be used and quantifying by how much it outperforms traditional design exploration techniques. This book should help a skilled systems designer to learn techniques for using MILP in their problems, and the skilled optimization expert to understand the types of computer systems problems that MILP can be applied to.
Fully operational source code for the examples used in this book is provided through the NEOS System at www.neos-guide.org/content/computer-architecture
Table of Contents: Acknowledgments / Introduction / An Overview of Optimization / Case Study: Instruction Set Customization / Case Study: Data Center Resource Management / Case Study: Spatial Architecture Scheduling / Case Study: Resource Allocation in Tiled Architectures / Conclusions / Bibliography / Authors' Biographies
商品描述(中文翻譯)
在過去幾十年中,電腦系統和底層硬體逐漸變得更大且更複雜。通過架構創新來提高效率的需求並未減弱,但定量評估各種選擇的影響變得更加困難。性能和資源消耗取決於許多模塊之間的複雜交互作用,每個模塊都有許多可能的替代實現方式。我們需要強大的計算機程序來探索大型設計空間,但傳統的方法,如開發模擬器、建立原型或使用傳統編程語言編寫基於啟發式算法的方法通常很繁瑣且緩慢。幸運的是,數學優化在理論上取得了巨大進展,現在有許多快速的商業和學術求解器可供使用。在本書中,我們介紹並描述了使用數學建模,特別是基於混合整數線性規劃(MILP)的優化作為設計和評估計算機系統的方法。其主要優點在於架構師或系統軟體開發人員只需描述問題是什麼,而不需要描述如何找到一個好的解決方案。這大大加快了他們的工作速度,並且正如我們的案例研究所示,它通常可以得到比傳統方法更好的解決方案。
在本書中,我們概述了用於描述計算機系統的數學優化工具的建模技術。我們簡要介紹了各種類型的數學優化框架,特別關注混合整數線性規劃,它在求解器時間和表達能力之間提供了良好的平衡。我們提供了四個詳細的案例研究 - 指令集定制、數據中心資源管理、空間架構調度和瓦片架構中的資源分配 - 顯示了MILP的應用以及它在超越傳統設計探索技術方面的優勢。本書應該能幫助熟練的系統設計師學習如何在他們的問題中使用MILP的技巧,並且能讓熟練的優化專家了解MILP可以應用於哪些類型的計算機系統問題。
本書中使用的示例的完整操作源代碼可通過NEOS系統的網站www.neos-guide.org/content/computer-architecture提供。
目錄:致謝 / 引言 / 優化概述 / 案例研究:指令集定制 / 案例研究:數據中心資源管理 / 案例研究:空間架構調度 / 案例研究:瓦片架構中的資源分配 / 結論 / 參考文獻 / 作者簡介