Abstract Domains in Constraint Programming Hardcover
暫譯: 約束程式設計中的抽象領域(精裝版)
Marie Pelleau
- 出版商: Morgan Kaufmann
- 出版日期: 2015-05-06
- 售價: $3,370
- 貴賓價: 9.5 折 $3,202
- 語言: 英文
- 頁數: 176
- 裝訂: Hardcover
- ISBN: 1785480103
- ISBN-13: 9781785480102
海外代購書籍(需單獨結帳)
相關主題
商品描述
Constraint Programming aims at solving hard combinatorial problems, with a computation time increasing in practice exponentially. The methods are today efficient enough to solve large industrial problems, in a generic framework. However, solvers are dedicated to a single variable type: integer or real. Solving mixed problems relies on ad hoc transformations. In another field, Abstract Interpretation offers tools to prove program properties, by studying an abstraction of their concrete semantics, that is, the set of possible values of the variables during an execution. Various representations for these abstractions have been proposed. They are called abstract domains. Abstract domains can mix any type of variables, and even represent relations between the variables.
In this work, we define abstract domains for Constraint Programming, so as to build a generic solving method, dealing with both integer and real variables. We also study the octagons abstract domain, already defined in Abstract Interpretation. Guiding the search by the octagonal relations, we obtain good results on a continuous benchmark. We also define our solving method using Abstract Interpretation techniques, in order to include existing abstract domains. Our solver, AbSolute, is able to solve mixed problems and use relational domains.
- Exploits the over-approximation methods to integrate AI tools in the methods of CP
- Exploits the relationships captured to solve continuous problems more effectively
- Learn from the developers of a solver capable of handling practically all abstract domains
商品描述(中文翻譯)
約束程式設計(Constraint Programming)旨在解決困難的組合問題,實際上的計算時間隨著問題的複雜度呈指數增長。如今,這些方法已經足夠高效,可以在通用框架中解決大型工業問題。然而,解算器專門針對單一變數類型:整數或實數。解決混合問題依賴於特定的轉換。在另一個領域,抽象解釋(Abstract Interpretation)提供了工具來證明程式屬性,通過研究其具體語義的抽象,即在執行過程中變數的可能值集合。已經提出了各種這些抽象的表示方式,稱為抽象域(abstract domains)。抽象域可以混合任何類型的變數,甚至表示變數之間的關係。
在本研究中,我們為約束程式設計定義了抽象域,以建立一種通用的解決方法,處理整數和實數變數。我們還研究了在抽象解釋中已經定義的八邊形抽象域(octagons abstract domain)。通過八邊形關係引導搜索,我們在連續基準測試中獲得了良好的結果。我們還使用抽象解釋技術定義了我們的解決方法,以納入現有的抽象域。我們的解算器 AbSolute 能夠解決混合問題並使用關係域。
- 利用過度近似方法將 AI 工具整合到 CP 方法中
- 利用捕捉到的關係更有效地解決連續問題
- 向能夠處理幾乎所有抽象域的解算器開發者學習