Computer-Aided Detection of Architectural Distortion in Prior Mammograms of Interval Cancer (Paperback)
暫譯: 電腦輔助檢測間歇性癌症先前乳房X光檢查中的結構扭曲 (平裝本)
Shantanu Banik, Rangaraj M. Rangayyan, J.E. Leo Desautels
- 出版商: Morgan & Claypool
- 出版日期: 2013-01-01
- 售價: $1,740
- 貴賓價: 9.5 折 $1,653
- 語言: 英文
- 頁數: 194
- 裝訂: Paperback
- ISBN: 1627050825
- ISBN-13: 9781627050821
-
相關分類:
Machine Learning
立即出貨 (庫存=1)
相關主題
商品描述
Abstract Architectural distortion is an important and early sign of breast cancer, but because of its subtlety, it is a common cause of false-negative findings on screening mammograms. Screening mammograms obtained prior to the detection of cancer could contain subtle signs of early stages of breast cancer, in particular, architectural distortion. This book presents image processing and pattern recognition techniques to detect architectural distortion in prior mammograms of interval-cancer cases. The methods are based upon Gabor filters, phase portrait analysis, procedures for the analysis of the angular spread of power, fractal analysis, Laws' texture energy measures derived from geometrically transformed regions of interest (ROIs), and Haralick's texture features. With Gabor filters and phase-portrait analysis, 4,224 ROIs were automatically obtained from 106 prior mammograms of 56 interval-cancer cases, including 301 true-positive ROIs related to architectural distortion, and from 52 mammograms of 13 normal cases. For each ROI, the fractal dimension, the entropy of the angular spread of power, 10 Laws' texture energy measures, and Haralick's 14 texture features were computed. The areas under the receiver operating characteristic (ROC) curves obtained using the features selected by stepwise logistic regression and the leave-one-image-out method are 0.77 with the Bayesian classifier, 0.76 with Fisher linear discriminant analysis, and 0.79 with a neural network classifier. Free-response ROC analysis indicated sensitivities of 0.80 and 0.90 at 5.7 and 8.8 false positives (FPs) per image, respectively, with the Bayesian classifier and the leave-one-image-out method. The present study has demonstrated the ability to detect early signs of breast cancer 15 months ahead of the time of clinical diagnosis, on the average, for interval-cancer cases, with a sensitivity of 0.8 at 5.7 FP/image. The presented computer-aided detection techniques, dedicated to accurate detection and localization of architectural distortion, could lead to efficient detection of early and subtle signs of breast cancer at pre-mass-formation stages. Table of Contents: Introduction / Detection of Early Signs of Breast Cancer / Detection and Analysis of Oriented Patterns / Detection of Potential Sites of Architectural Distortion / Experimental Set Up and Datasets / Feature Selection and Pattern Classification / Analysis of Oriented Patterns Related to Architectural Distortion / Detection of Architectural Distortion in Prior Mammograms / Concluding Remarks
商品描述(中文翻譯)
摘要 建築扭曲是乳腺癌的重要且早期的徵兆,但因其微妙性,常成為篩檢乳房X光檢查中假陰性結果的常見原因。在癌症檢測之前所獲得的篩檢乳房X光檢查可能包含早期乳腺癌的微妙徵兆,特別是建築扭曲。本書介紹了影像處理和模式識別技術,以檢測間歇性癌症案例中先前乳房X光檢查的建築扭曲。這些方法基於Gabor濾波器、相位肖像分析、功率角度分佈分析程序、分形分析、來自幾何變換的感興趣區域(ROI)的Laws紋理能量測量,以及Haralick的紋理特徵。利用Gabor濾波器和相位肖像分析,從56個間歇性癌症案例的106張先前乳房X光檢查中自動獲得了4,224個ROI,其中包括301個與建築扭曲相關的真陽性ROI,還有來自13個正常案例的52張乳房X光檢查。對於每個ROI,計算了分形維度、功率角度分佈的熵、10個Laws紋理能量測量和Haralick的14個紋理特徵。使用逐步邏輯回歸和留一影像法選擇的特徵所獲得的接收者操作特徵(ROC)曲線下面積分別為:使用貝葉斯分類器為0.77,使用Fisher線性判別分析為0.76,使用神經網絡分類器為0.79。自由反應ROC分析顯示,使用貝葉斯分類器和留一影像法時,分別在每張影像5.7和8.8個假陽性(FP)下的敏感度為0.80和0.90。本研究顯示,對於間歇性癌症案例,平均可在臨床診斷前15個月檢測到乳腺癌的早期徵兆,並在每張影像5.7個FP下的敏感度為0.8。本書所呈現的電腦輔助檢測技術,專注於準確檢測和定位建築扭曲,可能導致在腫塊形成前階段有效檢測乳腺癌的早期和微妙徵兆。 目錄:引言 / 乳腺癌早期徵兆的檢測 / 定向模式的檢測與分析 / 建築扭曲潛在位置的檢測 / 實驗設置與數據集 / 特徵選擇與模式分類 / 與建築扭曲相關的定向模式分析 / 在先前乳房X光檢查中檢測建築扭曲 / 總結評論