Time Series Forecasting in Python (Paperback)
暫譯: Python 時間序列預測 (平裝本)
Peixeiro, Marco
- 出版商: Manning
- 出版日期: 2022-10-04
- 定價: $2,150
- 售價: 9.5 折 $2,043
- 貴賓價: 9.0 折 $1,935
- 語言: 英文
- 頁數: 456
- 裝訂: Quality Paper - also called trade paper
- ISBN: 161729988X
- ISBN-13: 9781617299889
-
相關分類:
Python、程式語言
-
相關翻譯:
Python 時間序列預測 (簡中版)
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$2,040$1,938 -
$2,928The R Book, 2/e (Hardcover)
-
$1,744Time Series Analysis: Forecasting and Control, 5/e (Hardcover)
-
$1,890$1,796 -
$1,620$1,588 -
$1,881Machine Learning for Time-Series with Python: Forecast, predict, and detect anomalies with state-of-the-art machine learning methods (Paperback)
-
$2,200$2,090 -
$880$695 -
$2,650$2,597 -
$3,400$3,230 -
$3,160$3,002 -
$1,862Time Series Analysis with Python Cookbook: Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation (Paperback)
-
$1,948Deep Learning with TensorFlow and Keras, 3/e (Paperback)
-
$1,568Python Feature Engineering Cookbook : Over 70 recipes for creating, engineering, and transforming features to build machine learning models (Paperback)
-
$1,967Modern Time Series Forecasting with Python: Explore industry-ready time series forecasting using modern machine learning and deep learning (Paperback)
-
$2,300$2,185 -
$2,166Modern Time Series Forecasting with Python: Industry-ready machine learning and deep learning time series analysis with PyTorch and pandas, 2/e (Paperback)
相關主題
商品描述
Build predictive models from time-based patterns in your data. Master statistical models including new deep learning approaches for time series forecasting.
In Time Series Forecasting in Python you will learn how to:
Recognize a time series forecasting problem and build a performant predictive model
Create univariate forecasting models that account for seasonal effects and external variables
Build multivariate forecasting models to predict many time series at once
Leverage large datasets by using deep learning for forecasting time series
Automate the forecasting process
Time Series Forecasting in Python teaches you to build powerful predictive models from time-based data. Every model you create is relevant, useful, and easy to implement with Python. You'll explore interesting real-world datasets like Google's daily stock price and economic data for the USA, quickly progressing from the basics to developing large-scale models that use deep learning tools like TensorFlow.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the technology
You can predict the future--with a little help from Python, deep learning, and time series data! Time series forecasting is a technique for modeling time-centric data to identify upcoming events. New Python libraries and powerful deep learning tools make accurate time series forecasts easier than ever before.
About the book
Time Series Forecasting in Python teaches you how to get immediate, meaningful predictions from time-based data such as logs, customer analytics, and other event streams. In this accessible book, you'll learn statistical and deep learning methods for time series forecasting, fully demonstrated with annotated Python code. Develop your skills with projects like predicting the future volume of drug prescriptions, and you'll soon be ready to build your own accurate, insightful forecasts.
What's inside
Create models for seasonal effects and external variables
Multivariate forecasting models to predict multiple time series
Deep learning for large datasets
Automate the forecasting process
About the reader
For data scientists familiar with Python and TensorFlow.
About the author
Marco Peixeiro is a seasoned data science instructor who has worked as a data scientist for one of Canada's largest banks.
Table of Contents
PART 1 TIME WAITS FOR NO ONE
1 Understanding time series forecasting
2 A naive prediction of the future
3 Going on a random walk
PART 2 FORECASTING WITH STATISTICAL MODELS
4 Modeling a moving average process
5 Modeling an autoregressive process
6 Modeling complex time series
7 Forecasting non-stationary time series
8 Accounting for seasonality
9 Adding external variables to our model
10 Forecasting multiple time series
11 Capstone: Forecasting the number of antidiabetic drug prescriptions in Australia
PART 3 LARGE-SCALE FORECASTING WITH DEEP LEARNING
12 Introducing deep learning for time series forecasting
13 Data windowing and creating baselines for deep learning
14 Baby steps with deep learning
15 Remembering the past with LSTM
16 Filtering a time series with CNN
17 Using predictions to make more predictions
18 Capstone: Forecasting the electric power consumption of a household
PART 4 AUTOMATING FORECASTING AT SCALE
19 Automating time series forecasting with Prophet
20 Capstone: Forecasting the monthly average retail price of steak in Canada
21 Going above and beyond
商品描述(中文翻譯)
建構基於時間模式的預測模型。掌握統計模型,包括新的深度學習方法,用於時間序列預測。
在《Python中的時間序列預測》中,您將學習如何:
識別時間序列預測問題並建立高效的預測模型
創建考慮季節性影響和外部變數的單變量預測模型
建立多變量預測模型以同時預測多個時間序列
利用大型數據集,使用深度學習進行時間序列預測
自動化預測過程
《Python中的時間序列預測》教您如何從基於時間的數據中構建強大的預測模型。您創建的每個模型都是相關的、有用的,並且易於使用Python實現。您將探索有趣的真實世界數據集,如Google的每日股價和美國的經濟數據,快速從基礎知識進展到開發使用深度學習工具(如TensorFlow)的大型模型。
購買印刷書籍包括來自Manning Publications的免費PDF、Kindle和ePub格式電子書。
關於技術
您可以預測未來——只需一點Python、深度學習和時間序列數據的幫助!時間序列預測是一種建模以時間為中心的數據以識別即將發生事件的技術。新的Python庫和強大的深度學習工具使得準確的時間序列預測比以往任何時候都更容易。
關於本書
《Python中的時間序列預測》教您如何從基於時間的數據(如日誌、客戶分析和其他事件流)中獲得即時且有意義的預測。在這本易於理解的書中,您將學習時間序列預測的統計和深度學習方法,並用註釋的Python代碼進行全面演示。通過預測藥物處方的未來數量等項目來發展您的技能,您將很快準備好構建自己的準確且有洞察力的預測。
內容概覽
創建季節性影響和外部變數的模型
多變量預測模型以預測多個時間序列
大型數據集的深度學習
自動化預測過程
讀者對象
適合熟悉Python和TensorFlow的數據科學家。
作者介紹
**Marco Peixeiro** 是一位經驗豐富的數據科學講師,曾在加拿大最大的銀行之一擔任數據科學家。
目錄
第一部分 時間不等人
1 理解時間序列預測
2 對未來的天真預測
3 隨機漫步
第二部分 使用統計模型進行預測
4 建模移動平均過程
5 建模自回歸過程
6 建模複雜時間序列
7 預測非平穩時間序列
8 考慮季節性
9 將外部變數添加到模型中
10 預測多個時間序列
11 綜合實作:預測澳大利亞抗糖尿病藥物處方的數量
第三部分 使用深度學習進行大規模預測
12 介紹時間序列預測的深度學習
13 數據窗口化和為深度學習創建基準
14 深度學習的初步步驟
15 使用LSTM記住過去
16 使用CNN過濾時間序列
17 利用預測進行更多預測
18 綜合實作:預測家庭的電力消耗
第四部分 大規模自動化預測
19 使用Prophet自動化時間序列預測
20 綜合實作:預測加拿大牛排的每月平均零售價格
21 超越預期
作者簡介
Marco Peixeiro is a seasoned data science instructor who has worked as a data scientist for one of Canada's largest banks. He is an active contributor to Towards Data Science, an instructor on Udemy, and on YouTube in collaboration with freeCodeCamp.
作者簡介(中文翻譯)
Marco Peixeiro 是一位經驗豐富的資料科學講師,曾在加拿大最大的銀行之一擔任資料科學家。他是 Towards Data Science 的活躍貢獻者,也是 Udemy 的講師,並與 freeCodeCamp 在 YouTube 上合作。