Effective Data Science Infrastructure: How to Make Data Scientists Productive
暫譯: 有效的數據科學基礎設施:如何提升數據科學家的生產力
Tuulos, Ville
- 出版商: Manning
- 出版日期: 2022-08-16
- 定價: $2,150
- 售價: 9.5 折 $2,043
- 貴賓價: 9.0 折 $1,935
- 語言: 英文
- 頁數: 365
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1617299197
- ISBN-13: 9781617299193
-
相關分類:
Data Science
-
相關翻譯:
Effective數據科學基礎設施 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$680$530 -
$480$379 -
$1,200$948 -
$560$442 -
$560$442 -
$580$458 -
$580$458 -
$580$458 -
$648$616 -
$1,200$948 -
$2,280$2,160
商品描述
Available at a lower price from other sellers that may not offer free Prime shipping.
Simplify data science infrastructure to give data scientists an efficient path from prototype to production.
In Effective Data Science Infrastructure you will learn how to:
Design data science infrastructure that boosts productivity
Handle compute and orchestration in the cloud
Deploy machine learning to production
Monitor and manage performance and results
Combine cloud-based tools into a cohesive data science environment
Develop reproducible data science projects using Metaflow, Conda, and Docker
Architect complex applications for multiple teams and large datasets
Customize and grow data science infrastructure
Effective Data Science Infrastructure: How to make data scientists more productive is a hands-on guide to assembling infrastructure for data science and machine learning applications. It reveals the processes used at Netflix and other data-driven companies to manage their cutting edge data infrastructure. In it, you’ll master scalable techniques for data storage, computation, experiment tracking, and orchestration that are relevant to companies of all shapes and sizes. You’ll learn how you can make data scientists more productive with your existing cloud infrastructure, a stack of open source software, and idiomatic Python.
The author is donating proceeds from this book to charities that support women and underrepresented groups in data science.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the technology
Growing data science projects from prototype to production requires reliable infrastructure. Using the powerful new techniques and tooling in this book, you can stand up an infrastructure stack that will scale with any organization, from startups to the largest enterprises.
About the book
Effective Data Science Infrastructure teaches you to build data pipelines and project workflows that will supercharge data scientists and their projects. Based on state-of-the-art tools and concepts that power data operations of Netflix, this book introduces a customizable cloud-based approach to model development and MLOps that you can easily adapt to your company’s specific needs. As you roll out these practical processes, your teams will produce better and faster results when applying data science and machine learning to a wide array of business problems.
What's inside
Handle compute and orchestration in the cloud
Combine cloud-based tools into a cohesive data science environment
Develop reproducible data science projects using Metaflow, AWS, and the Python data ecosystem
Architect complex applications that require large datasets and models, and a team of data scientists
About the reader
For infrastructure engineers and engineering-minded data scientists who are familiar with Python.
商品描述(中文翻譯)
可從 其他賣家 以較低價格購買,這些賣家可能不提供免費的 Prime 運送。
簡化數據科學基礎設施,為數據科學家提供從原型到生產的高效路徑。
在 《有效的數據科學基礎設施》中,您將學習如何:
設計提升生產力的數據科學基礎設施
在雲端處理計算和編排
將機器學習部署到生產環境中
監控和管理性能及結果
將基於雲的工具結合成一個統一的數據科學環境
使用 Metaflow、Conda 和 Docker 開發可重現的數據科學項目
為多個團隊和大型數據集架構複雜的應用程序
自定義和擴展數據科學基礎設施
《有效的數據科學基礎設施:如何提高數據科學家的生產力》是一本實用指南,幫助組建數據科學和機器學習應用的基礎設施。它揭示了 Netflix 和其他數據驅動公司用於管理其尖端數據基礎設施的過程。在這本書中,您將掌握與各種規模公司相關的可擴展數據存儲、計算、實驗追蹤和編排技術。您將學習如何利用現有的雲基礎設施、一套開源軟件和慣用的 Python 使數據科學家更具生產力。
作者將把本書的收益捐贈給支持女性和數據科學中代表性不足群體的慈善機構。
購買印刷版書籍包括來自 Manning Publications 的免費 PDF、Kindle 和 ePub 格式電子書。
關於技術
將數據科學項目從原型推向生產需要可靠的基礎設施。使用本書中的強大新技術和工具,您可以建立一個隨著任何組織(從初創公司到大型企業)擴展的基礎設施堆棧。
關於本書
《有效的數據科學基礎設施》教您構建數據管道和項目工作流程,這將大大提升數據科學家及其項目的效率。基於推動 Netflix 數據操作的最先進工具和概念,本書介紹了一種可自定義的基於雲的模型開發和 MLOps 方法,您可以輕鬆地根據公司的具體需求進行調整。當您推行這些實用流程時,您的團隊在應用數據科學和機器學習解決各種商業問題時將產生更好、更快的結果。
內容概覽
在雲端處理計算和編排
將基於雲的工具結合成一個統一的數據科學環境
使用 Metaflow、AWS 和 Python 數據生態系統開發可重現的數據科學項目
為需要大型數據集和模型的複雜應用架構,以及一個數據科學家團隊
關於讀者
適合熟悉 Python 的基礎設施工程師和具工程思維的數據科學家。
作者簡介
At Netflix, Ville Tuulos designed and built Metaflow, a full-stack framework for data science. Currently, he is the CEO of a startup focusing on data science infrastructure.
作者簡介(中文翻譯)
在 Netflix,Ville Tuulos 設計並建造了 Metaflow,這是一個完整的數據科學框架。目前,他是專注於數據科學基礎設施的初創公司的 CEO。
目錄大綱
Table of Contents
1 Introducing data science infrastructure
2 The toolchain of data science
3 Introducing Metaflow
4 Scaling with the compute layer
5 Practicing scalability and performance
6 Going to production
7 Processing data
8 Using and operating models
9 Machine learning with the full stack
目錄大綱(中文翻譯)
Table of Contents
1 Introducing data science infrastructure
2 The toolchain of data science
3 Introducing Metaflow
4 Scaling with the compute layer
5 Practicing scalability and performance
6 Going to production
7 Processing data
8 Using and operating models
9 Machine learning with the full stack