Probabilistic Deep Learning: With Python, Keras and Tensorflow Probability
暫譯: 機率深度學習:使用 Python、Keras 和 Tensorflow Probability

Duerr, Oliver, Sick, Beate, Murina, Elvis

買這商品的人也買了...

相關主題

商品描述

Probabilistic Deep Learning shows how probabilistic deep learning models gives readers the tools to identify and account for uncertainty and potential errors in their results.

Starting by applying the underlying maximum likelihood principle of curve fitting to deep learning, readers will move on to using the Python-based Tensorflow Probability framework, and set up Bayesian neural networks that can state their uncertainties.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

商品描述(中文翻譯)

機率深度學習》展示了機率深度學習模型如何為讀者提供工具,以識別和考量結果中的不確定性和潛在錯誤。

本書從將曲線擬合的最大似然原則應用於深度學習開始,讀者將進一步使用基於 Python 的 Tensorflow Probability 框架,並設置可以表達其不確定性的貝葉斯神經網絡。

購買印刷版書籍可獲得 Manning Publications 提供的免費電子書,格式包括 PDF、Kindle 和 ePub。

作者簡介

Oliver Duerr is professor for data science at the University of Applied Sciences in Konstanz, Germany. Beate Sick holds a chair for applied statistics at ZHAW, and works as a researcher and lecturer at the University of Zurich, and as a lecturer at ETH Zurich. Elvis Murina is a research assistant, responsible for the extensive exercises that accompany this book.

Duerr and Sick are both experts in machine learning and statistics. They have supervised numerous bachelors, masters, and PhD theses on the topic of deep learning, and planned and conducted several postgraduate and masters- level deep learning courses. All three authors have been working with deep learning methods since 2013 and have extensive experience in both teaching the topic and developing probabilistic deep learning models.

作者簡介(中文翻譯)

奧利佛·杜爾(Oliver Duerr)是德國康斯坦茨應用科技大學的數據科學教授。比亞特·西克(Beate Sick)擔任蘇黎世應用科技大學的應用統計學教授,並在蘇黎世大學擔任研究員和講師,同時也是蘇黎世聯邦理工學院的講師。埃爾維斯·穆里納(Elvis Murina)是研究助理,負責本書所附的廣泛練習題。

杜爾和西克都是機器學習和統計學的專家。他們指導了許多關於深度學習的學士、碩士和博士論文,並規劃和開設了幾個研究生和碩士級別的深度學習課程。三位作者自2013年以來一直在使用深度學習方法,並在教學和開發概率深度學習模型方面擁有豐富的經驗。