Matrix Methods in Data Mining and Pattern Recognition, 2/e
暫譯: 數據挖掘與模式識別中的矩陣方法,第二版

Lars Eldén

  • 出版商: SIAM - Society for Industrial and Applied Mathematics
  • 出版日期: 2019-08-30
  • 售價: $3,400
  • 貴賓價: 9.9$3,366
  • 語言: 英文
  • 頁數: 229
  • 裝訂: Paperback
  • ISBN: 1611975859
  • ISBN-13: 9781611975857
  • 相關分類: Data-mining
  • 無法訂購

相關主題

商品描述

This thoroughly revised second edition provides an updated treatment of numerical linear algebra techniques for solving problems in data mining and pattern recognition. Adopting an application-oriented approach, the author introduces matrix theory and decompositions, describes how modern matrix methods can be applied in real life scenarios, and provides a set of tools that students can modify for a particular application. Building on material from the first edition, the author discusses basic graph concepts and their matrix counterparts. He introduces the graph Laplacian and properties of its eigenvectors needed in spectral partitioning and describes spectral graph partitioning applied to social networks and text classification. Examples are included to help readers visualize the results. This new edition also presents matrix-based methods that underlie many of the algorithms used for big data. The book provides a solid foundation to further explore related topics and presents applications such as classification of handwritten digits, text mining, text summarization, PageRank computations related to the Google search engine, and facial recognition. Exercises and computer assignments are available on a Web page that supplements the book. Matrix Methods in Data Mining and Pattern Recognition, Second Edition is primarily for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course and graduate students in data mining and pattern recognition areas who need an introduction to linear algebra techniques.

商品描述(中文翻譯)

這本徹底修訂的第二版提供了數值線性代數技術的最新處理,旨在解決數據挖掘和模式識別中的問題。作者採用以應用為導向的方法,介紹了矩陣理論和分解,描述了現代矩陣方法如何應用於現實生活場景,並提供了一套學生可以針對特定應用進行修改的工具。在第一版的基礎上,作者討論了基本的圖形概念及其矩陣對應物。他介紹了圖拉普拉斯算子及其特徵向量在光譜劃分中所需的性質,並描述了應用於社交網絡和文本分類的光譜圖劃分。書中包含示例以幫助讀者可視化結果。這一新版還介紹了許多用於大數據算法的基於矩陣的方法。該書為進一步探索相關主題提供了堅實的基礎,並呈現了如手寫數字分類、文本挖掘、文本摘要、與 Google 搜尋引擎相關的 PageRank 計算以及面部識別等應用。練習題和計算機作業可在補充書籍的網頁上獲得。《數據挖掘與模式識別中的矩陣方法,第二版》主要針對已經修過入門科學計算/數值分析課程的本科生,以及需要了解線性代數技術的數據挖掘和模式識別領域的研究生。

作者簡介

Lars Eldén is a retired professor of scientific computing at Linköping University in Sweden, where he was head of the mathematics department and director of the National Supercomputer Centre. He is the author, along with L. Wittmeyer-Koch and H. Bruun Nielsen, of Introduction to Numerical Computation: Analysis and MATLAB Illustrations (Studentlitteratur AB, 2004).

作者簡介(中文翻譯)

拉斯·埃爾登(Lars Eldén)是瑞典林雪平大學(Linköping University)退休的科學計算教授,曾擔任數學系主任及國家超級計算中心(National Supercomputer Centre)主任。他與L. Wittmeyer-Koch和H. Bruun Nielsen共同著作了《數值計算導論:分析與MATLAB插圖》(Introduction to Numerical Computation: Analysis and MATLAB Illustrations,Studentlitteratur AB,2004年)。