Web Page Recommendation Models: Theory and Algorithms (Synthesis Lectures on Data Management)
暫譯: 網頁推薦模型:理論與演算法(數據管理綜合講座)
Sule Gündüz-Ögüdücü
- 出版商: Morgan & Claypool
- 出版日期: 2010-12-01
- 售價: $1,300
- 貴賓價: 9.5 折 $1,235
- 語言: 英文
- 頁數: 86
- 裝訂: Paperback
- ISBN: 1608452476
- ISBN-13: 9781608452477
-
相關分類:
Algorithms-data-structures
海外代購書籍(需單獨結帳)
商品描述
One of the application areas of data mining is the World Wide Web (WWW or Web), which serves as a huge, widely distributed, global information service for every kind of information such as news, advertisements, consumer information, financial management, education, government, e-commerce, health services, and many other information services. The Web also contains a rich and dynamic collection of hyperlink information, Web page access and usage information, providing sources for data mining. The amount of information on the Web is growing rapidly, as well as the number of Web sites and Web pages per Web site. Consequently, it has become more difficult to find relevant and useful information for Web users. Web usage mining is concerned with guiding the Web users to discover useful knowledge and supporting them for decision-making. In that context, predicting the needs of a Web user as she visits Web sites has gained importance. The requirement for predicting user needs in order to guide the user in a Web site and improve the usability of the Web site can be addressed by recommending pages to the user that are related to the interest of the user at that time. This monograph gives an overview of the research in the area of discovering and modeling the users' interest in order to recommend related Web pages. The Web page recommender systems studied in this monograph are categorized according to the data mining algorithms they use for recommendation. Table of Contents: Introduction to Web Page Recommender Systems / Preprocessing for Web Page Recommender Models / Pattern Extraction / Evaluation Metrics
商品描述(中文翻譯)
資料探勘的一個應用領域是全球資訊網(World Wide Web,簡稱 WWW 或 Web),它作為一個龐大、廣泛分佈的全球資訊服務平台,提供各種資訊,如新聞、廣告、消費者資訊、財務管理、教育、政府、電子商務、健康服務以及許多其他資訊服務。Web 也包含了豐富且動態的超連結資訊、網頁訪問和使用資訊,為資料探勘提供了來源。隨著 Web 上資訊量的快速增長,以及每個網站的網站數量和網頁數量的增加,對於網頁使用者來說,尋找相關且有用的資訊變得更加困難。網頁使用探勘專注於引導網頁使用者發現有用的知識並支持他們的決策。在這個背景下,預測網頁使用者在訪問網站時的需求變得越來越重要。為了引導使用者在網站中並改善網站的可用性,預測使用者需求的要求可以通過向使用者推薦與其當前興趣相關的網頁來解決。本專著概述了在發現和建模使用者興趣方面的研究,以便推薦相關的網頁。本專著中研究的網頁推薦系統根據其用於推薦的資料探勘演算法進行分類。
目錄:網頁推薦系統簡介 / 網頁推薦模型的預處理 / 模式提取 / 評估指標