Semantic Role Labeling (Paperback)
暫譯: 語義角色標註 (平裝本)
Martha Palmer, Daniel Gildea, Nianwen Xue
- 出版商: Morgan & Claypool
- 出版日期: 2010-01-15
- 售價: $1,590
- 貴賓價: 9.5 折 $1,511
- 語言: 英文
- 頁數: 104
- 裝訂: Paperback
- ISBN: 1598298313
- ISBN-13: 9781598298314
-
相關分類:
Machine Learning、Text-mining、語音辨識 Speech-recognition
立即出貨 (庫存=1)
買這商品的人也買了...
-
$3,325The Internet of Things: Connecting Objects (Hardcover)
-
$460$391 -
$350$298 -
$1,050$998
相關主題
商品描述
This book is aimed at providing an overview of several aspects of semantic role labeling. Chapter 1 begins with linguistic background on the definition of semantic roles and the controversies surrounding them. Chapter 2 describes how the theories have led to structured lexicons such as FrameNet, VerbNet and the PropBank Frame Files that in turn provide the basis for large scale semantic annotation of corpora. This data has facilitated the development of automatic semantic role labeling systems based on supervised machine learning techniques. Chapter 3 presents the general principles of applying both supervised and unsupervised machine learning to this task, with a description of the standard stages and feature choices, as well as giving details of several specific systems. Recent advances include the use of joint inference to take advantage of context sensitivities, and attempts to improve performance by closer integration of the syntactic parsing task with semantic role labeling. Chapter 3 also discusses the impact the granularity of the semantic roles has on system performance. Having outlined the basic approach with respect to English, Chapter 4 goes on to discuss applying the same techniques to other languages, using Chinese as the primary example. Although substantial training data is available for Chinese, this is not the case for many other languages, and techniques for projecting English role labels onto parallel corpora are also presented. Table of Contents: Preface / Semantic Roles / Available Lexical Resources / Machine Learning for Semantic Role Labeling / A Cross-Lingual Perspective / Summary
商品描述(中文翻譯)
本書旨在提供語義角色標註的幾個方面的概述。第一章開始於語言學背景,定義語義角色及其相關的爭議。第二章描述了這些理論如何導致結構化詞彙庫的形成,例如 FrameNet、VerbNet 和 PropBank Frame Files,這些詞彙庫進而為大規模語料的語義標註提供了基礎。這些數據促進了基於監督式機器學習技術的自動語義角色標註系統的發展。第三章介紹了將監督式和非監督式機器學習應用於此任務的一般原則,描述了標準階段和特徵選擇,並詳細介紹了幾個特定系統。最近的進展包括使用聯合推理來利用上下文敏感性,以及通過更緊密地將句法解析任務與語義角色標註整合來提高性能。第三章還討論了語義角色的粒度對系統性能的影響。在概述了有關英語的基本方法後,第四章討論了將相同技術應用於其他語言,以中文為主要例子。儘管中文有大量的訓練數據,但許多其他語言並非如此,並且還介紹了將英語角色標籤投射到平行語料上的技術。目錄:前言 / 語義角色 / 可用的詞彙資源 / 語義角色標註的機器學習 / 跨語言的視角 / 總結