Semantic Role Labeling (Paperback) (語義角色標註 (平裝本))
Martha Palmer, Daniel Gildea, Nianwen Xue
- 出版商: Morgan & Claypool
- 出版日期: 2010-01-15
- 定價: $1,400
- 售價: 9.0 折 $1,260
- 語言: 英文
- 頁數: 104
- 裝訂: Paperback
- ISBN: 1598298313
- ISBN-13: 9781598298314
-
相關分類:
Machine Learning、Text-mining、語音辨識 Speech-recognition
立即出貨 (庫存=1)
買這商品的人也買了...
-
$3,500$3,325 -
$460$414 -
$350$298 -
$1,050$998
相關主題
商品描述
This book is aimed at providing an overview of several aspects of semantic role labeling. Chapter 1 begins with linguistic background on the definition of semantic roles and the controversies surrounding them. Chapter 2 describes how the theories have led to structured lexicons such as FrameNet, VerbNet and the PropBank Frame Files that in turn provide the basis for large scale semantic annotation of corpora. This data has facilitated the development of automatic semantic role labeling systems based on supervised machine learning techniques. Chapter 3 presents the general principles of applying both supervised and unsupervised machine learning to this task, with a description of the standard stages and feature choices, as well as giving details of several specific systems. Recent advances include the use of joint inference to take advantage of context sensitivities, and attempts to improve performance by closer integration of the syntactic parsing task with semantic role labeling. Chapter 3 also discusses the impact the granularity of the semantic roles has on system performance. Having outlined the basic approach with respect to English, Chapter 4 goes on to discuss applying the same techniques to other languages, using Chinese as the primary example. Although substantial training data is available for Chinese, this is not the case for many other languages, and techniques for projecting English role labels onto parallel corpora are also presented. Table of Contents: Preface / Semantic Roles / Available Lexical Resources / Machine Learning for Semantic Role Labeling / A Cross-Lingual Perspective / Summary
商品描述(中文翻譯)
本書旨在提供語義角色標記的多個方面的概述。第1章首先介紹了語義角色的定義以及相關的爭議。第2章描述了這些理論如何導致結構化詞彙資源,例如FrameNet、VerbNet和PropBank Frame Files,這些資源為大規模語義標註提供了基礎。這些資料促進了基於監督式機器學習技術的自動語義角色標記系統的發展。第3章介紹了將監督式和非監督式機器學習應用於此任務的一般原則,包括標準階段和特徵選擇的描述,並提供了幾個具體系統的詳細信息。最近的進展包括使用聯合推理來利用上下文敏感性,以及通過更緊密地將句法分析任務與語義角色標記相結合來提高性能。第3章還討論了語義角色的細粒度對系統性能的影響。在概述了對英語的基本方法後,第4章繼續討論將相同技術應用於其他語言,以中文作為主要示例。雖然中文有大量的訓練資料可用,但對於許多其他語言來說並非如此,因此還介紹了將英語角色標籤投射到平行語料庫的技術。目錄:前言/語義角色/可用的詞彙資源/語義角色標記的機器學習/跨語言視角/摘要