Ending Spam: Bayesian Content Filtering and the Art of Statistical Language Classification
暫譯: 結束垃圾郵件:貝葉斯內容過濾與統計語言分類的藝術
Jonathan Zdziarski
- 出版商: No Starch Press
- 出版日期: 2005-07-01
- 售價: $1,590
- 貴賓價: 9.5 折 $1,511
- 語言: 英文
- 頁數: 312
- 裝訂: Paperback
- ISBN: 1593270526
- ISBN-13: 9781593270520
-
相關分類:
機率統計學 Probability-and-statistics
已過版
買這商品的人也買了...
-
$970Introduction to Algorithms, 2/e
-
$590$466 -
$2,480$2,356 -
$590$502 -
$820$804 -
$620$527 -
$580$458 -
$520$442 -
$3,590$3,411 -
$650$507 -
$1,078Operating System Principles, 7/e(IE) (美國版ISBN:0471694665-Operating System Concepts, 7/e) (平裝)
-
$3,930$3,734 -
$620$490 -
$880$748 -
$820$648 -
$590JBoss : A Developer's Notebook
-
$680$646 -
$1,090$1,068 -
$1,140$1,029 -
$650$507 -
$640$506 -
$300$237 -
$300$255 -
$249$212 -
$490$417
相關主題
商品描述
Description:
Considerable research and some brilliant minds have invented clever new ways to fight spam in all its nefarious forms. This landmark title describes, in-depth, how statistical filtering is being used by next generation spam filters to identify and filter spam. The author explains how spam filtering works and how language classification and machine learning combine to produce remarkably accurate spam filters. Readers gain a complete understanding of the mathematical approaches used in today's spam filters, decoding, tokenization, the use of various algorithms (including Bayesian analysis and Markovian discrimination), and the benefits of using open-source solutions to end spam. Interviews with the creators of many of the best spam filters provide further insight into the anti-spam crusade. Fascinating reading for any geek.
Table of Contents:
Introduction
PART I: An Introduction to Spam Filtering
Chapter 1: The History of Spam
Chapter 2: Historical Approaches to Fighting Spam
Chapter 3: Language Classification Concepts
Chapter 4: Statistical Filtering Fundamentals
PART II: Fundamentals of Statistical Filtering
Chapter 5: Decoding: Uncombobulating Messages
Chapter 6: Tokenization: The Building Blocks of Spam
Chapter 7: The Low-Down Dirty Tricks of Spammers
Chapter 8: Data Storage for a Zillion Records
Chapter 9: Scaling in Large Environments
PART III: Advanced Concepts of Statistical Filtering
Chapter 10: Testing Theory
Chapter 11: Concept Identification: Advanced Tokenization
Chapter 12: Fifth-Order Markovian Discrimination
Chapter 13: Intelligent Feature Set Reduction
Chapter 14: Collaborative Algorithms
Appendix: Shining Examples of Filtering
Index
商品描述(中文翻譯)
描述:
大量的研究和一些傑出的頭腦發明了巧妙的新方法來對抗各種形式的垃圾郵件。本書深入描述了下一代垃圾郵件過濾器如何使用統計過濾技術來識別和過濾垃圾郵件。作者解釋了垃圾郵件過濾的工作原理,以及語言分類和機器學習如何結合以產生極為準確的垃圾郵件過濾器。讀者將全面了解當今垃圾郵件過濾器中使用的數學方法,包括解碼、標記化、各種算法的使用(包括貝葉斯分析和馬可夫判別),以及使用開源解決方案來終結垃圾郵件的好處。與許多最佳垃圾郵件過濾器創建者的訪談進一步提供了對反垃圾郵件運動的見解。對任何技術愛好者來說,這是一本引人入勝的讀物。
目錄:
引言
第一部分:垃圾郵件過濾簡介
第1章:垃圾郵件的歷史
第2章:對抗垃圾郵件的歷史方法
第3章:語言分類概念
第4章:統計過濾基礎
第二部分:統計過濾的基礎
第5章:解碼:解構訊息
第6章:標記化:垃圾郵件的構建塊
第7章:垃圾郵件發送者的卑鄙手段
第8章:數據存儲的無限紀錄
第9章:大型環境中的擴展
第三部分:統計過濾的進階概念
第10章:測試理論
第11章:概念識別:進階標記化
第12章:五階馬可夫判別
第13章:智能特徵集減少
第14章:協作算法
附錄:過濾的卓越範例
索引