Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (智能系統中的概率推理:合理推斷網絡)
Judea Pearl
- 出版商: Morgan Kaufmann
- 出版日期: 1988-09-01
- 售價: $2,780
- 貴賓價: 9.5 折 $2,641
- 語言: 英文
- 頁數: 552
- 裝訂: Paperback
- ISBN: 1558604790
- ISBN-13: 9781558604797
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$650$514 -
$480$408 -
$540$427 -
$780$663 -
$500$450 -
$1,200$948 -
$990CCNP ONT Official Exam Certification Guide (Hardcover)
-
$780$616 -
$650$585 -
$580$522 -
$450$351 -
$690$545 -
$490$387 -
$650$553 -
$590$460 -
$480$379 -
$680$578 -
$300$270 -
$450$383 -
$780$616 -
$580$452 -
$400$316 -
$780$663 -
$420$336 -
$450$356
相關主題
商品描述
Order This Book | Authors | Contents | Related Titles
Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic.
The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information.
Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.
Judea Pearl, University of California, Los Angeles
- Chapter 1 Uncertainty In AI Systems: An Overview
Chapter 2 Bayesian Inference
Chapter 3 Markov and Bayesian Networks: Two Graphical Representations of Probabilistic Knowledge
Chapter 4 Belief Updating by Network Propagation
Chapter 5 Distributed Revision of Composite Beliefs
Chapter 6 Decision and Control
Chapter 7 Taxonomic Hierarchies, Continuous Variables, and Uncertain Probabilities
Chapter 8 Learning Structure from Data
Chapter 9 Non-Bayesian Formalisms for Managing Uncertainty
Chapter 10 Logic and Probability: The Strange Connection
商品描述(中文翻譯)
「智能系統中的概率推理」是一本完整且易於理解的書籍,介紹了在不確定性下合理推理的理論基礎和計算方法。作者提供了概率作為一種處理部分信念的推理語言的一致解釋,並對其他人工智能方法處理不確定性的方法,如Dempster-Shafer形式主義、真實維護系統和非單調邏輯,提供了統一的觀點。
作者區分了語法和語義方法處理不確定性,並提供了基於信念網絡的技術,為基於語義的系統提供了操作機制。具體而言,網絡傳播技術作為一種機制,將概率理論的理論一致性與現代推理系統技術的要求相結合:模塊化的聲明性輸入、概念上有意義的推論和並行分佈式計算。應用領域包括診斷、預測、圖像解釋、多傳感器融合、決策支持系統、計劃識別、計劃、語音識別等,簡而言之,幾乎涉及從不確定線索和不完整信息中得出結論的任務。
「智能系統中的概率推理」對人工智能、決策理論、統計學、邏輯學、哲學、認知心理學和管理科學的學者和研究人員特別感興趣。在知識基礎系統、運營研究、工程和統計學等領域的專業人士將發現理論和計算工具具有即時的實際用途。該書還可以作為人工智能、運營研究或應用概率的研究生課程的優秀教材。
作者: Judea Pearl, 加州大學洛杉磯分校
目錄:
- 第1章 人工智能系統中的不確定性: 概述
- 第2章 貝葉斯推理
- 第3章 馬爾可夫和貝葉斯網絡: 兩種概率知識的圖形表示
- 第4章 通過網絡傳播進行信念更新
- 第5章 分佈式修訂組合信念
- 第6章 決策和控制
- 第7章 分類層次、連續變量和不確定概率
- 第8章 從數據中學習結構
- 第9章 管理不確定性的非貝葉斯形式主義
- 第10章 邏輯和概率: 奇怪的聯繫
相關書籍:
- 人工智能
- ...
- ...
- ...