NEURAL NETWORKS with MATLAB
Marvin L.
- 出版商: CreateSpace Independ
- 出版日期: 2016-10-23
- 售價: $1,320
- 貴賓價: 9.5 折 $1,254
- 語言: 英文
- 頁數: 418
- 裝訂: Paperback
- ISBN: 1539701956
- ISBN-13: 9781539701958
-
相關分類:
Matlab
無法訂購
買這商品的人也買了...
-
$520$468 -
$4,190$3,981 -
$1,500$1,470 -
$500$450 -
$2,185$2,070 -
$2,166$2,052 -
$1,039Linear Algebra with Applications, 8/e (IE-Paperback)
-
$2,080Fundamentals of LTE (Hardcover)
-
$1,320Ninja Hacking: Unconventional Penetration Testing Tactics and Techniques (Paperback)
-
$3,150Signal and Power Integrity - Simplified, 2/e (Hardcover)
-
$1,683Digital Forensics with Open Source Tools (Paperback)
-
$1,250$1,188 -
$480$379 -
$1,683Java Performance (Paperback)
-
$862編譯系統透視:圖解編譯原理
-
$1,782Wireshark for Security Professionals: Using Wireshark and the Metasploit Framework
-
$1,764MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence (Paperback)
-
$680$537 -
$403深入理解 TensorFlow 架構設計與實現原理
相關主題
商品描述
Neural Network Toolbox provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox. The more importan features are de next: •Deep learning, including convolutional neural networks and autoencoders •Parallel computing and GPU support for accelerating training (with Parallel Computing Toolbox •Supervised learning algorithms, including multilayer, radial basis, learning vector quantization (LVQ), time-delay, nonlinear autoregressive (NARX), and recurrent neural network (RNN) •Unsupervised learning algorithms, including self-organizing maps and competitive layers •Apps for data-fitting, pattern recognition, and clustering •Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance •Simulink blocks for building and evaluating neural networks and for control systems applications
商品描述(中文翻譯)
神經網絡工具箱提供了創建、訓練、可視化和模擬神經網絡的算法、函數和應用程序。您可以進行分類、回歸、聚類、降維、時間序列預測和動態系統建模和控制。該工具箱包括用於圖像分類和特徵學習任務的卷積神經網絡和自編碼器深度學習算法。為了加快大數據集的訓練速度,您可以使用並行計算工具箱將計算和數據分佈在多核處理器、GPU和計算機集群上。更重要的功能如下:
• 深度學習,包括卷積神經網絡和自編碼器
• 並行計算和GPU支持,用於加速訓練(使用並行計算工具箱)
• 監督學習算法,包括多層、徑向基函數、學習向量量化(LVQ)、時滯、非線性自回歸(NARX)和循環神經網絡(RNN)
• 非監督學習算法,包括自組織映射和競爭層
• 用於數據擬合、模式識別和聚類的應用程序
• 預處理、後處理和網絡可視化,以提高訓練效率和評估網絡性能
• 用於構建和評估神經網絡以及控制系統應用的Simulink塊