Artificial Intelligence for Humans, Volume 3: Deep Learning and Neural Networks
Jeff Heaton
- 出版商: CreateSpace Independ
- 出版日期: 2015-10-28
- 售價: $1,050
- 貴賓價: 9.5 折 $998
- 語言: 英文
- 頁數: 374
- 裝訂: Paperback
- ISBN: 1505714346
- ISBN-13: 9781505714340
-
相關分類:
人工智慧、DeepLearning
-
相關翻譯:
人工智能算法 捲3 深度學習和神經網絡 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$4,190$3,981 -
$1,380$1,352 -
$1,323Data Mining : Concepts and Techniques, 3/e (Hardcover)
-
$1,460$1,431 -
$2,980$2,831 -
$834$792 -
$3,500$3,325 -
$460$414 -
$680$646 -
$780$616 -
$360$284 -
$1,980$1,881 -
$1,040$988 -
$1,090$1,036 -
$1,872Deep Learning: A Practitioner's Approach (Paperback)
-
$390$351 -
$3,540$3,363 -
$580$493 -
$1,980$1,881 -
$160$160 -
$480$379 -
$500$395 -
$360$281 -
$580$452 -
$880$695
相關主題
商品描述
Neural networks have been a mainstay of artificial intelligence since its earliest days. Now, exciting new technologies such as deep learning and convolution are taking neural networks in bold new directions. In this book, we will demonstrate the neural networks in a variety of real-world tasks such as image recognition and data science. We examine current neural network technologies, including ReLU activation, stochastic gradient descent, cross-entropy, regularization, dropout, and visualization.
商品描述(中文翻譯)
神經網絡自從人工智慧的早期以來一直是其中的重要組成部分。現在,深度學習和卷積等令人興奮的新技術正在將神經網絡帶入全新的領域。在這本書中,我們將展示神經網絡在各種實際任務中的應用,例如圖像識別和數據科學。我們將探討當前的神經網絡技術,包括ReLU激活、隨機梯度下降、交叉熵、正則化、隨機失活和可視化。