Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing
暫譯: 穩健低秩與稀疏矩陣分解手冊:在影像與影片處理中的應用
Thierry Bouwmans (Editor), Necdet Serhat Aybat (Editor), El-hadi Zahzah (Editor)
- 出版商: Chapman
- 出版日期: 2016-05-27
- 售價: $8,350
- 貴賓價: 9.5 折 $7,933
- 語言: 英文
- 頁數: 536
- 裝訂: Hardcover
- ISBN: 1498724620
- ISBN-13: 9781498724623
海外代購書籍(需單獨結帳)
相關主題
商品描述
Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques.
Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance.
With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.
商品描述(中文翻譯)
《穩健低秩與稀疏矩陣分解手冊:在影像與視頻處理中的應用》展示了如何通過將數據分解為低秩和稀疏矩陣來進行穩健的子空間學習和追蹤,為計算機視覺應用提供合適的框架。這本書結合了現有和新穎的想法,方便地為您提供多種不同的分解、算法、實現和基準技術的一站式訪問。
本書分為五個部分,首先介紹了通過低秩和稀疏矩陣分解的穩健主成分分析(PCA)。第二部分探討了穩健的矩陣因式分解/補全問題,而第三部分則專注於穩健的在線子空間估計、學習和追蹤。第四部分涵蓋了影像和視頻處理的應用,討論了影像分析、影像去噪、運動顯著性檢測、視頻編碼、關鍵幀提取和高光譜視頻處理。最後一部分介紹了視頻監控中背景/前景分離的資源和應用。
這本手冊匯集了來自全球領先團隊的貢獻,提供了有關穩健低秩和稀疏矩陣分解的概念、理論、算法和應用的完整概述。它旨在為計算機視覺、影像與視頻處理、實時架構、機器學習和數據挖掘的研究人員、開發人員和研究生提供參考。