Parallelism in Matrix Computations (Scientific Computation)
暫譯: 矩陣計算中的平行處理(科學計算)
Efstratios Gallopoulos, Bernard Philippe, Ahmed H. Sameh
- 出版商: Springer
- 出版日期: 2015-08-12
- 售價: $4,470
- 貴賓價: 9.5 折 $4,247
- 語言: 英文
- 頁數: 473
- 裝訂: Hardcover
- ISBN: 9401771871
- ISBN-13: 9789401771870
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations.
It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms.
The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of parallel iterative linear system solvers with emphasis on scalable preconditioners, (b) parallel schemes for obtaining a few of the extreme eigenpairs or those contained in a given interval in the spectrum of a standard or generalized symmetric eigenvalue problem, and (c) parallel methods for computing a few of the extreme singular triplets. Part IV focuses on the development of parallel algorithms for matrix functions and special characteristics such as the matrix pseudospectrum and the determinant. The book also reviews the theoretical and practical background necessary when designing these algorithms and includes an extensive bibliography that will be useful to researchers and students alike.
The book brings together many existing algorithms for the fundamental matrix computations that have a proven track record of efficient implementation in terms of data locality and data transfer on state-of-the-art systems, as well as several algorithms that are presented for the first time, focusing on the opportunities for parallelism and algorithm robustness.
商品描述(中文翻譯)
這本書主要作為一部研究專著,也可用於研究生課程中,專注於矩陣計算中的平行演算法設計。
本書假設讀者對數值線性代數、平行架構和平行程式設計範式有一般但不深入的了解。
本書分為四個部分:(I) 基礎;(II) 密集和特殊矩陣計算;(III) 稀疏矩陣計算;以及 (IV) 矩陣函數和特性。第一部分探討平行程式設計範式和基本核心,包括稀疏矩陣的重排序方案。第二部分專注於密集矩陣計算,例如解線性系統的平行演算法、線性最小二乘法、對稱代數特徵值問題和奇異值分解。它還涉及針對特殊線性系統(如帶狀、Vandermonde、Toeplitz 和區塊 Toeplitz 系統)開發平行演算法。第三部分處理稀疏矩陣計算:(a) 開發平行迭代線性系統求解器,重點在於可擴展的預處理器,(b) 獲取標準或廣義對稱特徵值問題的光譜中幾個極端特徵對的平行方案,或在給定區間內的特徵對,(c) 計算幾個極端奇異三元組的平行方法。第四部分專注於矩陣函數和特殊特性的平行演算法開發,例如矩陣偽頻譜和行列式。本書還回顧了設計這些演算法所需的理論和實踐背景,並包含一份廣泛的參考文獻,對研究人員和學生都將有幫助。
本書匯集了許多現有的基本矩陣計算演算法,這些演算法在數據局部性和數據傳輸方面在最先進的系統上有著良好的實現記錄,還有幾個首次提出的演算法,專注於平行性和演算法穩健性的機會。