Generalized Principal Component Analysis (Paperback)
暫譯: 廣義主成分分析 (平裝本)

René Vidal, Yi Ma, Shankar Sastry

  • 出版商: Springer
  • 出版日期: 2018-04-14
  • 售價: $3,620
  • 貴賓價: 9.5$3,439
  • 語言: 英文
  • 頁數: 566
  • 裝訂: Paperback
  • ISBN: 1493979124
  • ISBN-13: 9781493979127
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc.

This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.

 

Rene Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University.

Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.

 

 

商品描述(中文翻譯)

這本書提供了對於最新數學理論和計算工具的全面介紹,這些工具用於建模來自一個或多個低維子空間(或流形)的高維數據,並可能受到噪聲、重大錯誤或異常值的干擾。這一具有挑戰性的任務需要開發新的代數、幾何、統計和計算方法,以有效且穩健地估計和分割一個或多個子空間。書中還展示了這些新方法在圖像處理、圖像和視頻分割、人臉識別和聚類、以及混合系統識別等方面的有趣實際應用。

本書旨在作為研究生和數據科學、機器學習、計算機視覺、圖像和信號處理以及系統理論的初學者研究者的教科書。書中包含了豐富的插圖、範例和練習,並且大部分內容是自足的,附有三個附錄,回顧了本書中使用的統計學、優化和代數幾何的基本概念和原則。

Rene Vidal是約翰霍普金斯大學生物醫學工程的教授及視覺動態與學習實驗室的主任。

Yi Ma是上海科技大學資訊科學與技術學院的執行院長及教授。S. Shankar Sastry是加州大學伯克利分校工程學院的院長,電機工程與計算機科學教授,以及生物工程教授。