Pattern Recognition and Machine Learning (Paperback)

Christopher M. Bishop

相關主題

商品描述

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

商品描述(中文翻譯)

這是第一本從貝葉斯觀點介紹模式識別的教科書。本書提出了近似推斷演算法,允許在無法獲得精確答案的情況下快速獲得近似答案。它使用圖形模型來描述機率分佈,而其他書籍並未將圖形模型應用於機器學習。本書不假設讀者具備模式識別或機器學習的先前知識,但需要對多變量微積分和基本線性代數有一定的熟悉度,並且對機率的使用有一些經驗會有所幫助,儘管這不是必需的,因為本書包含了基本機率論的自成一體的介紹。