Training Data for Machine Learning: Human Supervision from Annotation to Data Science
暫譯: 機器學習的訓練數據:從標註到數據科學的人類監督
Sarkis, Anthony
- 出版商: O'Reilly
- 出版日期: 2023-12-19
- 定價: $2,300
- 售價: 9.0 折 $2,070
- 語言: 英文
- 頁數: 329
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1492094528
- ISBN-13: 9781492094524
-
相關分類:
Machine Learning、Data Science
-
相關翻譯:
機器學習的訓練資料 (Training Data for Machine Learning) (繁中版)
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$2,300$2,185 -
$2,817Artificial Intelligence in Finance: A Python-Based Guide
-
$2,641Mastering Financial Pattern Recognition: Finding and Back-Testing Candlestick Patterns with Python
-
$2,575Building Recommendation Systems in Python and Jax: Hands-On Production Systems at Scale
-
$2,565Implementing Mlops in the Enterprise: A Production-First Approach
-
$594$564 -
$630$497 -
$2,328Deep Learning for Finance: Creating Machine & Deep Learning Models for Trading in Python
-
$560$442 -
$500$395 -
$680$537 -
$2,689Machine Learning Production Systems: Engineering Machine Learning Models and Pipelines (Paperback)
商品描述
Your training data has as much to do with the success of your data project as the algorithms themselves--most failures in deep learning systems relate to training data. But while training data is the foundation for successful machine learning, there are few comprehensive resources to help you ace the process. This hands-on guide explains how to work with and scale training data. Data science professionals and machine learning engineers will gain a solid understanding of the concepts, tools, and processes needed to:
- Design, deploy, and ship training data for production-grade deep learning applications
- Integrate with a growing ecosystem of tools
- Recognize and correct new training data-based failure modes
- Improve existing system performance and avoid development risks
- Confidently use automation and acceleration approaches to more effectively create training data
- Avoid data loss by structuring metadata around created datasets
- Clearly explain training data concepts to subject matter experts and other shareholders
- Successfully maintain, operate, and improve your system
商品描述(中文翻譯)
您的訓練數據與數據專案的成功同樣重要,與算法本身一樣——大多數深度學習系統的失敗都與訓練數據有關。然而,儘管訓練數據是成功機器學習的基礎,但卻缺乏全面的資源來幫助您掌握這一過程。本實用指南解釋了如何處理和擴展訓練數據。數據科學專業人士和機器學習工程師將深入了解以下概念、工具和流程:
- 設計、部署和交付適用於生產級深度學習應用的訓練數據
- 與不斷增長的工具生態系統進行整合
- 辨識並修正基於新訓練數據的失敗模式
- 改善現有系統性能並避免開發風險
- 自信地使用自動化和加速方法,更有效地創建訓練數據
- 通過圍繞創建的數據集結構化元數據來避免數據丟失
- 清晰地向主題專家和其他利益相關者解釋訓練數據概念
- 成功維護、操作和改進您的系統
作者簡介
Anthony Sarkis is the lead engineer on Diffgram Training Data Management software and founder of Diffgram Inc. Prior to that he was a Software Engineer at Skidmore, Owings & Merrill and co-founded DriveCarma.ca.
作者簡介(中文翻譯)
安東尼·薩基斯(Anthony Sarkis)是Diffgram訓練數據管理軟體的首席工程師,也是Diffgram Inc.的創辦人。在此之前,他曾擔任Skidmore, Owings & Merrill的軟體工程師,並共同創辦了DriveCarma.ca。