Practical Fairness: Achieving Fair and Secure Data Models
暫譯: 實用公平:實現公平與安全的數據模型
Nielsen, Aileen
- 出版商: O'Reilly
- 出版日期: 2021-01-05
- 定價: $1,890
- 售價: 8.8 折 $1,663 (限時優惠至 2025-03-31)
- 語言: 英文
- 頁數: 326
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1492075736
- ISBN-13: 9781492075738
-
相關分類:
人工智慧、Data Science、資訊安全
立即出貨 (庫存=1)
商品描述
Fairness is becoming a paramount consideration for data scientists. Mounting evidence indicates that the widespread deployment of machine learning and AI in business and government is reproducing the same biases we've been trying to fight in the real world. But what does fairness mean when it comes to code? This practical book covers basic concerns related to data security and privacy to help AI and data professionals use code that's fair and free of bias.
Many realistic best practices are emerging at all steps along the data pipeline today, from data selection and preprocessing to black box model audits. Author Aileen Nielsen guides you through the technical, legal, and ethical aspects of making code fair and secure while highlighting up-to-date academic research and ongoing legal developments related to fairness and algorithms.
- Write data processing and modeling code that follows fair machine learning best practices
- Understand complex interrelationships between fairness, privacy, and data security
- Use preventive measures to minimize bias when developing data modeling pipelines
- Identify opportunities for bias and discrimination in current data scientist models
- Detect data pipeline aspects that implicate security and privacy concerns
商品描述(中文翻譯)
公平性正成為資料科學家們的重要考量。越來越多的證據顯示,機器學習和人工智慧在商業和政府中的廣泛應用正在重現我們在現實世界中試圖對抗的偏見。但在程式碼中,公平性究竟意味著什麼?這本實用的書籍涵蓋了與資料安全和隱私相關的基本問題,以幫助人工智慧和資料專業人士使用公平且無偏見的程式碼。
目前,從資料選擇和預處理到黑箱模型審計,資料管道的每個步驟中都出現了許多現實的最佳實踐。作者 Aileen Nielsen 引導您了解使程式碼公平和安全的技術、法律和倫理方面,同時強調與公平性和演算法相關的最新學術研究和持續的法律發展。
- 撰寫遵循公平機器學習最佳實踐的資料處理和建模程式碼
- 理解公平性、隱私和資料安全之間的複雜相互關係
- 在開發資料建模管道時使用預防措施以最小化偏見
- 確認當前資料科學家模型中偏見和歧視的機會
- 偵測涉及安全和隱私問題的資料管道方面
作者簡介
Aileen Nielsen is a software engineer who has analyzed data in a variety of settings from a physics laboratory to a political campaign to a healthcare startup. She also has a law degree and splits her time between a deep learning startup and research as a Fellow in Law and Technology at ETH Zurich. She has given talks around the world on fairness issues in data and modeling.
作者簡介(中文翻譯)
Aileen Nielsen 是一位軟體工程師,她在各種環境中分析數據,從物理實驗室到政治運動,再到醫療創業公司。她還擁有法律學位,並在深度學習創業公司和蘇黎世聯邦理工學院的法律與科技研究員之間分配時間。她在全球各地就數據和建模中的公平性問題發表過演講。