Programming PyTorch for Deep Learning Creating and Deploying Deep Learning Applications (深度學習的 PyTorch 程式設計)
Ian Pointer
- 出版商: O'Reilly
- 出版日期: 2019-10-29
- 定價: $1,720
- 售價: 9.5 折 $1,634
- 貴賓價: 9.0 折 $1,548
- 語言: 英文
- 頁數: 200
- 裝訂: Paperback
- ISBN: 1492045357
- ISBN-13: 9781492045359
-
相關分類:
DeepLearning
-
相關翻譯:
基於PyTorch的深度學習 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$940$700 -
$580$458 -
$958深度學習
-
$580$458 -
$474$450 -
$550$550 -
$680$537 -
$580$458 -
$281PyTorch 深度學習 (Deep Learning with PyTorch: A practical approach to building neural network models using PyTorch)
-
$393深度學習的數學
-
$680$578 -
$505深入理解 AutoML 和 AutoDL:構建自動化機器學習與深度學習平臺
-
$1,235Introduction to Natural Language Processing (Hardcover)
-
$2,641$2,502 -
$1,700$1,615 -
$520$411 -
$750$593 -
$2,185$2,070 -
$1,140$1,080 -
$3,730$3,544 -
$2,641$2,502 -
$550$435 -
$880$695 -
$474$450 -
$650$507
相關主題
商品描述
Deep learning is changing everything. This machine-learning method has already surpassed traditional computer vision techniques, and the same is happening with NLP. If you're looking to bring deep learning into your domain, this practical book will bring you up to speed on key concepts using Facebook's PyTorch framework.
Once author Ian Pointer helps you set up PyTorch on a cloud-based environment, you'll learn how use the framework to create neural architectures for performing operations on images, sound, text, and other types of data. By the end of the book, you'll be able to create neural networks and train them on multiple types of data.
- Learn how to deploy deep learning models to production
- Explore PyTorch use cases in companies other than Facebook
- Learn how to apply transfer learning to images
- Apply cutting-edge NLP techniques using a model trained on Wikipedia
商品描述(中文翻譯)
深度學習正在改變一切。這種機器學習方法已經超越了傳統的計算機視覺技術,並且在自然語言處理方面也正在發生同樣的情況。如果你想將深度學習應用於你的領域,這本實用書將使用Facebook的PyTorch框架帶你快速掌握關鍵概念。
作者Ian Pointer將幫助你在基於雲的環境中設置PyTorch,然後你將學習如何使用該框架來創建用於處理圖像、聲音、文本和其他類型數據的神經架構。通過閱讀本書,你將能夠創建神經網絡並對多種類型的數據進行訓練。
本書的內容包括:
- 學習如何將深度學習模型部署到生產環境中
- 探索除Facebook以外的公司中的PyTorch應用案例
- 學習如何將遷移學習應用於圖像處理
- 使用在維基百科上訓練的模型應用尖端的自然語言處理技術
以上是該段文字的翻譯,請注意移除了HTML代碼,僅輸出純文字。