Hands-On Unsupervised Learning Using Python (Paperback)
暫譯: 實戰無監督學習:使用 Python
Ankur A. Patel
- 出版商: O'Reilly
- 出版日期: 2019-04-16
- 定價: $2,780
- 售價: 8.0 折 $2,224
- 語言: 英文
- 頁數: 400
- 裝訂: Paperback
- ISBN: 1492035645
- ISBN-13: 9781492035640
-
相關分類:
Python、程式語言、Machine Learning
-
相關翻譯:
非監督式學習|使用 Python (Hands-On Unsupervised Learning Using Python) (繁中版)
基於 Python 的無監督學習 (簡中版)
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$1,990Spatial Analysis: Statistics, Visualization, and Computational Methods (Hardcover)
-
$1,744Introduction to Machine Learning with Python: A Guide for Data Scientists (Paperback)
-
$1,617Deep Learning (Hardcover)
-
$2,100$2,058 -
$1,280Learning pandas : High-performance data manipulation and analysis in Python, 2/e
-
$1,280Natural Language Processing with TensorFlow
-
$1,788Neural Networks and Deep Learning: A Textbook
-
$1,800$1,710 -
$2,200$2,090 -
$480$379 -
$2,240Practical Time Series Analysis: Prediction with Statistics and Machine Learning (Paperback)
-
$2,000$1,900 -
$454大話數據分析 — Tableau 數據可視化實戰
-
$1,800$1,710 -
$420$315 -
$1,235Introduction to Natural Language Processing (Hardcover)
-
$1,470$1,397 -
$980$774 -
$1,200$948 -
$560$504 -
$594$564 -
$450$356 -
$500$390 -
$500$390 -
$480$379
相關主題
商品描述
Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied. Unsupervised learning, on the other hand, can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover.
Author Ankur Patel shows you how to apply unsupervised learning using two simple, production-ready Python frameworks: Scikit-learn and TensorFlow using Keras. With code and hands-on examples, data scientists will identify difficult-to-find patterns in data and gain deeper business insight, detect anomalies, perform automatic feature engineering and selection, and generate synthetic datasets. All you need is programming and some machine learning experience to get started.
- Compare the strengths and weaknesses of the different machine learning approaches: supervised, unsupervised, and reinforcement learning
- Set up and manage machine learning projects end-to-end
- Build an anomaly detection system to catch credit card fraud
- Clusters users into distinct and homogeneous groups
- Perform semisupervised learning
- Develop movie recommender systems using restricted Boltzmann machines
- Generate synthetic images using generative adversarial networks
商品描述(中文翻譯)
許多業界專家認為無監督學習是人工智慧的下一個前沿,可能是通往通用人工智慧的關鍵。由於世界上大多數數據都是未標記的,傳統的監督學習無法應用。無監督學習則可以應用於未標記的數據集,以發現深埋在數據中的有意義模式,這些模式對人類來說幾乎不可能被發現。
作者 Ankur Patel 向您展示如何使用兩個簡單且可投入生產的 Python 框架來應用無監督學習:Scikit-learn 和使用 Keras 的 TensorFlow。通過代碼和實作範例,數據科學家將能夠識別數據中難以發現的模式,獲得更深入的商業洞察,檢測異常,自動進行特徵工程和選擇,並生成合成數據集。您只需具備編程和一些機器學習經驗即可開始。
- 比較不同機器學習方法的優缺點:監督學習、無監督學習和強化學習
- 端到端設置和管理機器學習項目
- 建立異常檢測系統以捕捉信用卡詐騙
- 將用戶聚類為不同且同質的群體
- 執行半監督學習
- 使用限制玻爾茲曼機開發電影推薦系統
- 使用生成對抗網絡生成合成圖像