Practical Machine Learning with H2O: Powerful, Scalable Techniques for Deep Learning and AI
暫譯: 實用的 H2O 機器學習:深度學習與 AI 的強大可擴展技術

Darren Cook

買這商品的人也買了...

商品描述

<Table of Contents>

Chapter 1Installation and Quick-Start
Preparing to Install
Install H2O with R (CRAN)
Install H2O with Python (pip)
Our First Learning
Flow
Summary
Chapter 2Data Import, Data Export
Memory Requirements
Preparing the Data
Getting Data into H2O
Data Manipulation
Getting Data Out of H2O
Summary
Chapter 3The Data Sets
Data Set: Building Energy Efficiency
Data Set: Handwritten Digits
Data Set: Football Scores
Summary
Chapter 4Common Model Parameters
Supported Metrics
The Essentials
Effort
Scoring and Validation
Early Stopping
Checkpoints
Cross-Validation (aka k-folds)
Data Weighting
Sampling, Generalizing
Regression
Output Control
Summary
Chapter 5Random Forest
Decision Trees
Random Forest
Parameters
Building Energy Efficiency: Default Random Forest
Grid Search
Building Energy Efficiency: Tuned Random Forest
MNIST: Default Random Forest
MNIST: Tuned Random Forest
Football: Default Random Forest
Football: Tuned Random Forest
Summary
Chapter 6Gradient Boosting Machines
Boosting
The Good, the Bad, and… the Mysterious
Parameters
Building Energy Efficiency: Default GBM
Building Energy Efficiency: Tuned GBM
MNIST: Default GBM
MNIST: Tuned GBM
Football: Default GBM
Football: Tuned GBM
Summary
Chapter 7Linear Models
GLM Parameters
Building Energy Efficiency: Default GLM
Building Energy Efficiency: Tuned GLM
MNIST: Default GLM
MNIST: Tuned GLM
Football: Default GLM
Football: Tuned GLM
Summary
Chapter 8Deep Learning (Neural Nets)
What Are Neural Nets?
Parameters
Building Energy Efficiency: Default Deep Learning
Building Energy Efficiency: Tuned Deep Learning
MNIST: Default Deep Learning
MNIST: Tuned Deep Learning
Football: Default Deep Learning
Football: Tuned Deep Learning
Summary
Appendix: More Deep Learning Parameters
Chapter 9Unsupervised Learning
K-Means Clustering
Deep Learning Auto-Encoder
Principal Component Analysis
GLRM
Missing Data
Summary
Chapter 10Everything Else
Staying on Top of and Poking into Things
Installing the Latest Version
Running from the Command Line
Clusters
Spark / Sparkling Water
Naive Bayes
Ensembles
Summary
Chapter 11Epilogue: Didn’t They All Do Well!
Building Energy Results
MNIST Results
Football Data
How Low Can You Go?
Summary

<About the Author>

Darren Cook
Darren Cook has over 20 years of experience as a software developer, data analyst, and technical director, working on everything from financial trading systems to NLP, data visualization tools, and PR websites for some of the world’s largest brands. He is skilled in a wide range of computer languages, including R, C++, PHP, JavaScript, and Python. He works at QQ Trend, a financial data analysis and data products company.

<Colophon>

The animal on the cover of Practical Machine Learning with H2O is a crayfish, a small lobster-like crustacean found in freshwater habitats throughout the world. Alternate names include crawfish, crawdads, and mudbugs, depending on the region.

There are over 500 species of crayfish, over half of which occur in North America. There is great variation in size, shape, and color across species. Crayfish are typically 3 to 4 inches in North America, while certain species in Australia grow to be a staggering 15 inches and can weigh as much as 8 pounds.

Like crabs and other crustaceans, crayfish shed their hard outer shells periodically, eating them to recoup calcium. They are nocturnal creatures, possessing keen eyesight as well as the ability to move their eyes in different directions at once.

Crayfish have eight pairs of legs, four of which are used for walking. The other legs are used for swimming backward, a maneuver that allows the crayfish to dart quickly through the water. Lost limbs can be regenerated, a capability that comes in handy during the competitive (and often aggressive) mating season.

Crayfish are opportunistic omnivores who consume almost anything, including plants, clams, snails, insects, and dead organic matter. Their own predators include fish (they are widely regarded as a tackle box staple), otters, birds, and humans. More than 100 million pounds of crawfish are produced each year in Louisiana, where it was adopted as the state's official crustacean in 1983.

Many of the animals on O'Reilly covers are endangered; all of them are important to the world. To learn more about how you can help, go to animals.oreilly.com .

The cover image is from Treasury of Animal Illustrations by Dover. The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag's Ubuntu Mono.

商品描述(中文翻譯)

<目錄>

第1章 安裝與快速入門

準備安裝

使用 R (CRAN) 安裝 H2O

使用 Python (pip) 安裝 H2O

我們的第一次學習

流程

總結

第2章 數據導入與導出

內存需求

準備數據

將數據導入 H2O

數據操作

將數據導出 H2O

總結

第3章 數據集

數據集:建築能源效率

數據集:手寫數字

數據集:足球比分

總結

第4章 常見模型參數

支持的指標

基本要素

努力程度

評分與驗證

提前停止

檢查點

交叉驗證 (即 k-folds)

數據加權

抽樣與概括

回歸

輸出控制

總結

第5章 隨機森林

決策樹

隨機森林

參數

建築能源效率:默認隨機森林

網格搜索

建築能源效率:調整後的隨機森林

MNIST:默認隨機森林

MNIST:調整後的隨機森林

足球:默認隨機森林

足球:調整後的隨機森林

總結

第6章 梯度提升機

提升

好、壞與…神秘

參數

建築能源效率:默認 GBM

建築能源效率:調整後的 GBM

MNIST:默認 GBM

MNIST:調整後的 GBM

足球:默認 GBM

足球:調整後的 GBM

總結

第7章 線性模型

GLM 參數

建築能源效率:默認 GLM

建築能源效率:調整後的 GLM

MNIST:默認 GLM

MNIST:調整後的 GLM

足球:默認 GLM

足球:調整後的 GLM

總結

第8章 深度學習 (神經網絡)

什麼是神經網絡?

參數

建築能源效率:默認深度學習

建築能源效率:調整後的深度學習

MNIST:默認深度學習

MNIST:調整後的深度學習

足球:默認深度學習

足球:調整後的深度學習

總結

附錄:更多深度學習參數

第9章 無監督學習

K-Means 聚類

深度學習自編碼器

主成分分析

GLRM

缺失數據

總結

第10章 其他所有內容

保持對事物的掌控並深入了解

安裝最新版本

從命令行運行

集群

Spark / Sparkling Water

朴素貝葉斯

集成方法

總結

第11章 後記:他們都做得很好!

建築能源結果

MNIST 結果

足球數據

你能低到什麼程度?

總結

<關於作者>

Darren Cook

Darren Cook 擁有超過 20 年的軟體開發、數據分析和技術總監經驗,曾參與從金融交易系統到自然語言處理、數據可視化工具及一些全球最大品牌的公關網站的各種工作。他精通多種計算機語言,包括 R、C++、PHP、JavaScript 和 Python。他在 QQ Trend 工作,這是一家金融數據分析和數據產品公司。

<版權說明>

《實用機器學習與 H2O》封面上的動物是小龍蝦,這是一種在全球淡水棲息地中發現的小型龍蝦類甲殼類動物。根據地區的不同,還有其他名稱,包括小蝦、泥蝦等。



小龍蝦的物種超過 500 種,其中一半以上分佈在北美。不同物種之間的大小、形狀和顏色變化很大。北美的小龍蝦通常為 3 到 4 英寸,而某些澳大利亞物種可長到驚人的 15 英寸,體重可達 8 磅。



像螃蟹和其他甲殼類動物一樣,小龍蝦會定期脫去硬外殼,並吃掉它們以補充鈣質。它們是夜行性生物,擁有敏銳的視力,並能同時將眼睛朝不同方向移動。



小龍蝦有八對腿,其中四對用於行走。其他腿則用於向後游泳,這種動作使小龍蝦能迅速穿過水中。失去的肢體可以再生,這一能力在競爭(且通常具有攻擊性)的交配季節中非常有用。



小龍蝦是機會主義的雜食性動物,幾乎什麼都吃,包括植物、蛤蜊、蝸牛、昆蟲和死有機物。它們的捕食者包括魚類(被廣泛視為釣魚箱的必備品)、水獺、鳥類和人類。每年在路易斯安那州生產超過 1 億磅的小龍蝦,該州於 1983 年將其定為官方甲殼類動物。



O'Reilly 封面上的許多動物都瀕臨絕種;它們對世界都很重要。要了解如何提供幫助,請訪問 animals.oreilly.com。



封面圖片來自 Dover 的《動物插圖寶庫》。封面字體為 URW Typewriter 和 Guardian Sans。文本字體為 Adobe Minion Pro;標題字體為 Adobe Myriad Condensed;代碼字體為 Dalton Maag 的 Ubuntu Mono。

最後瀏覽商品 (20)