Hands-On Machine Learning with R (Hardcover)
暫譯: 實戰機器學習與 R
Boehmke, Brad, Greenwell, Brandon M.
- 出版商: CRC
- 出版日期: 2019-11-11
- 售價: $3,800
- 貴賓價: 9.5 折 $3,610
- 語言: 英文
- 頁數: 488
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1138495689
- ISBN-13: 9781138495685
-
相關分類:
Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$4,460$4,237 -
$2,980$2,831 -
$3,430$3,259 -
$1,360$1,333 -
$3,040Introduction to Data Science: Data Analysis and Prediction Algorithms with R
-
$580$452 -
$350$315 -
$2,650$2,597 -
$1,936Deep Learning with R, 2/e (Paperback)
商品描述
Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today's most popular machine learning methods. This book serves as a practitioner's guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory.
Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R's machine learning stack and be able to implement a systematic approach for producing high quality modeling results.
Features:
- Offers a practical and applied introduction to the most popular machine learning methods.
- Topics covered include feature engineering, resampling, deep learning and more.
- Uses a hands-on approach and real world data.
商品描述(中文翻譯)
《用 R 實作機器學習》提供了一種實用且應用的學習方式,幫助讀者理解當今最受歡迎的機器學習方法。本書作為機器學習過程的實務指南,旨在幫助讀者學會在 R 中應用機器學習技術堆疊,包括使用各種 R 套件,如 **glmnet**、**h2o**、**ranger**、**xgboost**、**keras** 等,來有效地建模並從數據中獲取洞見。本書偏向於實作方式,通過具體的範例和少量理論,提供對機器學習概念的直觀理解。
在整本書中,讀者將接觸到完整的機器學習過程,包括特徵工程、重抽樣、超參數調整、模型評估和解釋。讀者將接觸到強大的演算法,如正則化回歸、隨機森林、梯度提升機、深度學習、廣義低秩模型等。通過偏向實作的方式並使用真實世界的數據,讀者將對驅動這些演算法和套件的架構和引擎有直觀的理解,了解何時以及如何調整各種超參數,並能夠解釋模型結果。在本書結束時,讀者應該能夠牢牢掌握 R 的機器學習技術堆疊,並能夠實施系統化的方法來產生高品質的建模結果。
特色:
- 提供對最受歡迎的機器學習方法的實用和應用介紹。
- 涵蓋的主題包括特徵工程、重抽樣、深度學習等。
- 採用實作方式和真實世界的數據。
作者簡介
Brad Boehmke is a data scientist at 84.51° where he wears both software developer and machine learning engineer hats. He is an Adjunct Professor at the University of Cincinnati, author of Data Wrangling with R, and creator of multiple public and private enterprise R packages.
Brandon Greenwell is a data scientist at 84.51° where he works on a diverse team to enable, empower, and encourage others to successfully apply machine learning to solve real business problems. He's part of the Adjunct Graduate Faculty at Wright State University, an Adjunct Instructor at the University of Cincinnati, and the author of several R packages available on CRAN.
作者簡介(中文翻譯)
Brad Boehmke 是 84.51° 的數據科學家,擔任軟體開發者和機器學習工程師的角色。他是辛辛那提大學的兼任教授,著作有 Data Wrangling with R,並創建了多個公共和私有的企業 R 套件。
Brandon Greenwell 是 84.51° 的數據科學家,與多元化團隊合作,使他人能夠、賦能並鼓勵他們成功應用機器學習來解決實際商業問題。他是萊特州立大學的兼任研究生教員,辛辛那提大學的兼任講師,並且是幾個可在 CRAN 上獲得的 R 套件的作者。