Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning
暫譯: 使用 Python 進行應用文本分析:利用機器學習實現語言感知數據產品
Benjamin Bengfort, Rebecca Bilbro, Tony Ojeda
- 出版商: O'Reilly
- 出版日期: 2018-07-31
- 定價: $2,190
- 售價: 9.5 折 $2,081
- 貴賓價: 9.0 折 $1,971
- 語言: 英文
- 頁數: 332
- 裝訂: Paperback
- ISBN: 1491963042
- ISBN-13: 9781491963043
-
相關分類:
Python、程式語言、Machine Learning
-
相關翻譯:
基於 Python 的智能文本分析 (Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning) (簡中版)
立即出貨
買這商品的人也買了...
-
$560Python 自然語言處理 (Natural Language Processing with Python)
-
$2,800$2,660 -
$352Python 計算機視覺編程 (Programming Computer Vision with Python)
-
$1,760$1,672 -
$500NLP 漢語自然語言處理原理與實踐
-
$990Hands-On Machine Learning with Scikit-Learn and TensorFlow (Paperback)
-
$1,650$1,568 -
$1,184Practical Big Data Analytics: Hands-on techniques to implement enterprise analytics and machine learning using Hadoop, Spark, NoSQL and R
-
$990Web Scraping with Python: Collecting More Data from the Modern Web, 2/e (Paperback)
-
$1,088Deep Learning with TensorFlow - Second Edition: Explore neural networks with Python
-
$1,280Natural Language Processing with TensorFlow
-
$1,788Neural Networks and Deep Learning: A Textbook
-
$1,050$1,029 -
$1,080Natural Language Processing in Action: Understanding, analyzing, and generating text with Python (Paperback)
-
$480$379 -
$704Python 和 NLTK 自然語言處理 (Natural Language Processing: Python and NLTK)
-
$1,715Interaction Design : Beyond Human-Computer Interaction, 5/e (Paperback)
-
$301混沌工程實戰 手把手教你實現系統穩定性
-
$2,090$1,980 -
$1,840$1,748 -
$621使用 GitOps 實現 Kubernetes 的持續部署:模式、流程及工具
-
$653機器學習項目交付實戰
-
$458Python服務端測試開發實戰
-
$490$387 -
$556加速:高效能軟件交付之道
商品描述
From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist’s approach to building language-aware products with applied machine learning.
You’ll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, topic modeling, entity resolution, graph analysis, and visual steering. By the end of the book, you’ll be equipped with practical methods to solve any number of complex real-world problems.
- Preprocess and vectorize text into high-dimensional feature representations
- Perform document classification and topic modeling
- Steer the model selection process with visual diagnostics
- Extract key phrases, named entities, and graph structures to reason about data in text
- Build a dialog framework to enable chatbots and language-driven interaction
- Use Spark to scale processing power and neural networks to scale model complexity
商品描述(中文翻譯)
從新聞和演講到社交媒體上的非正式聊天,自然語言是最豐富且最未被充分利用的數據來源之一。它不僅以不斷變化和適應上下文的方式持續流動,還包含傳統數據來源所無法傳達的信息。解鎖自然語言的關鍵在於創造性地應用文本分析。本書以數據科學家的視角,介紹如何利用應用機器學習來構建具語言感知的產品。
您將學習使用 Python 進行文本分析的穩健、可重複和可擴展的技術,包括上下文和語言特徵工程、向量化、分類、主題建模、實體解析、圖形分析和視覺引導。到本書結束時,您將掌握實用的方法來解決各種複雜的現實世界問題。
- 對文本進行預處理並向量化為高維特徵表示
- 執行文檔分類和主題建模
- 通過視覺診斷引導模型選擇過程
- 提取關鍵短語、命名實體和圖形結構,以推理文本中的數據
- 構建對話框架以啟用聊天機器人和基於語言的互動
- 使用 Spark 擴展處理能力,並使用神經網絡擴展模型複雜性