Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, 2/e (Paperback)
暫譯: Python 數據分析:使用 Pandas、NumPy 和 IPython 進行數據處理,第二版 (平裝本)
Wes McKinney
- 出版商: O'Reilly
- 出版日期: 2017-10-31
- 定價: $1,980
- 售價: 5.0 折 $990
- 語言: 英文
- 頁數: 550
- 裝訂: Paperback
- ISBN: 1491957662
- ISBN-13: 9781491957660
-
相關分類:
Python
-
相關翻譯:
Python 資料分析, 2/e (Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, 2/e) (繁中版)
利用 Python 進行數據分析 (Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, 2/e) (簡中版)
-
其他版本:
Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter, 3/e (Paperback)
買這商品的人也買了...
-
深入淺出設計模式 (Head First Design Patterns)$880$695 -
C++ Primer, 5/e (Paperback)$2,580$2,451 -
電腦網際網路, 6/e (國際版)(Computer Networking: A Top-Down Approach, 6/e)(附部分內容光碟)$650$585 -
Computer Organization and Design: The Hardware/Software Interface, 5/e (Asian Edition)(IE-Paperback)$1,650$1,617 -
$1,680An Introduction to Statistical Learning: With Applications in R (Hardcover) -
Introducing Python: Modern Computing in Simple Packages (Paperback)$1,760$1,672 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
網站擷取|使用 Python (Web Scraping with Python: Collecting Data from the Modern Web)$580$458 -
Data Science from Scratch|用 Python 學資料科學 (中文版)(Data Science from Scratch: First Principles with Python)$580$458 -
你所不知道的 JS|非同步處理與效能 (You Don't Know JS: Async & Performance)$520$411 -
R for Data Science: Import, Tidy, Transform, Visualize, and Model Data (Paperback)$1,900$1,805 -
$1,617Deep Learning (Hardcover) -
超圖解 Arduino 互動設計入門, 3/e$680$578 -
演算法技術手冊, 2/e (Algorithms in a Nutshell: A Practical Guide, 2/e)$580$458 -
你所不知道的 JS|ES6 與未來發展 (You Don't Know JS: ES6 & Beyond)$520$411 -
$990Hands-On Machine Learning with Scikit-Learn and TensorFlow (Paperback) -
Clean Architecture: A Craftsman's Guide to Software Structure and Design (Paperback)$1,850$1,813 -
Deep Learning with Python (Paperback)$1,760$1,672 -
Python 入門邁向高手之路王者歸來$699$594 -
Python 資料科學學習手冊 (Python Data Science Handbook: Essential Tools for Working with Data)$780$616 -
完整學會 Git, GitHub, Git Server 的 24堂課, 2/e$440$374 -
Python 資料運算與分析實戰:一次搞懂 NumPy, SciPy, Matplotlib, Pandas 最強套件$590$502 -
資安防禦指南|資訊安全架構實務典範 (Defensive Security Handbook: Best Practices for Securing Infrastructure)$580$458 -
無瑕的程式碼-整潔的軟體設計與架構篇 (Clean Architecture: A Craftsman's Guide to Software Structure and Design)$580$452 -
Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python, 2/e (Paperback)$2,622$2,484
商品描述
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process.
Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub.
- Use the IPython shell and Jupyter notebook for exploratory computing
- Learn basic and advanced features in NumPy (Numerical Python)
- Get started with data analysis tools in the pandas library
- Use flexible tools to load, clean, transform, merge, and reshape data
- Create informative visualizations with matplotlib
- Apply the pandas groupby facility to slice, dice, and summarize datasets
- Analyze and manipulate regular and irregular time series data
- Learn how to solve real-world data analysis problems with thorough, detailed examples
商品描述(中文翻譯)
獲得完整的指導,學習如何在 Python 中操作、處理、清理和分析數據集。這本針對 Python 3.6 更新的第二版實用指南,充滿了實際案例研究,展示了如何有效解決各種數據分析問題。在此過程中,您將學習到最新版本的 pandas、NumPy、IPython 和 Jupyter。
本書由 Python pandas 專案的創建者 Wes McKinney 撰寫,是一本實用的、現代化的 Python 數據科學工具入門書籍。它非常適合剛接觸 Python 的分析師以及對數據科學和科學計算感興趣的 Python 程式設計師。數據文件和相關資料可在 GitHub 上獲得。
- 使用 IPython shell 和 Jupyter notebook 進行探索性計算
- 學習 NumPy(Numerical Python)的基本和進階功能
- 開始使用 pandas 庫中的數據分析工具
- 使用靈活的工具加載、清理、轉換、合併和重塑數據
- 使用 matplotlib 創建資訊豐富的可視化圖表
- 應用 pandas 的 groupby 功能來切片、切塊和總結數據集
- 分析和操作常規及不規則的時間序列數據
- 學習如何通過詳細的實例解決現實世界的數據分析問題
