Towards Adaptive Spoken Dialog Systems
暫譯: 邁向自適應語音對話系統
Alexander Schmitt
- 出版商: Springer
- 出版日期: 2014-10-15
- 售價: $4,600
- 貴賓價: 9.5 折 $4,370
- 語言: 英文
- 頁數: 268
- 裝訂: Paperback
- ISBN: 1489991689
- ISBN-13: 9781489991683
海外代購書籍(需單獨結帳)
相關主題
商品描述
In Monitoring Adaptive Spoken Dialog Systems, authors Alexander Schmitt and Wolfgang Minker investigate statistical approaches that allow for recognition of negative dialog patterns in Spoken Dialog Systems (SDS). The presented stochastic methods allow a flexible, portable and accurate use.
Beginning with the foundations of machine learning and pattern recognition, this monograph examines how frequently users show negative emotions in spoken dialog systems and develop novel approaches to speech-based emotion recognition using hybrid approach to model emotions. The authors make use of statistical methods based on acoustic, linguistic and contextual features to examine the relationship between the interaction flow and the occurrence of emotions using non-acted recordings several thousand real users from commercial and non-commercial SDS.
Additionally, the authors present novel statistical methods that spot problems within a dialog based on interaction patterns. The approaches enable future SDS to offer more natural and robust interactions. This work provides insights, lessons and inspiration for future research and development, not only for spoken dialog systems, but for data-driven approaches to human-machine interaction in general.
商品描述(中文翻譯)
在《監控自適應語音對話系統》中,作者亞歷山大·施密特(Alexander Schmitt)和沃爾夫岡·敏克(Wolfgang Minker)探討了統計方法,這些方法能夠識別語音對話系統(Spoken Dialog Systems, SDS)中的負面對話模式。所提出的隨機方法允許靈活、可攜帶且準確的使用。
本專著從機器學習和模式識別的基礎開始,檢視用戶在語音對話系統中表現出負面情緒的頻率,並開發使用混合方法來建模情緒的語音情感識別新方法。作者利用基於聲學、語言和上下文特徵的統計方法,檢查互動流程與情緒出現之間的關係,使用來自商業和非商業SDS的數千名真實用戶的非表演錄音。
此外,作者提出了新穎的統計方法,根據互動模式發現對話中的問題。這些方法使未來的SDS能夠提供更自然和穩健的互動。本研究為未來的研究和開發提供了見解、教訓和靈感,不僅針對語音對話系統,也針對一般的人機互動數據驅動方法。